canvas.rst 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966
  1. .. _guide-canvas:
  2. =============================
  3. Canvas: Designing Workflows
  4. =============================
  5. .. contents::
  6. :local:
  7. :depth: 2
  8. .. _canvas-subtasks:
  9. .. _canvas-signatures:
  10. Signatures
  11. ==========
  12. .. versionadded:: 2.0
  13. You just learned how to call a task using the tasks ``delay`` method
  14. in the :ref:`calling <guide-calling>` guide, and this is often all you need,
  15. but sometimes you may want to pass the signature of a task invocation to
  16. another process or as an argument to another function.
  17. A :func:`~celery.signature` wraps the arguments, keyword arguments, and execution options
  18. of a single task invocation in a way such that it can be passed to functions
  19. or even serialized and sent across the wire.
  20. Signatures are often nicknamed "subtasks" because they descripe a task to be called
  21. within a task.
  22. - You can create a signature for the ``add`` task using its name like this::
  23. >>> from celery import signature
  24. >>> signature('tasks.add', args=(2, 2), countdown=10)
  25. tasks.add(2, 2)
  26. This task has a signature of arity 2 (two arguments): ``(2, 2)``,
  27. and sets the countdown execution option to 10.
  28. - or you can create one using the task's ``subtask`` method::
  29. >>> add.subtask((2, 2), countdown=10)
  30. tasks.add(2, 2)
  31. - There is also a shortcut using star arguments::
  32. >>> add.s(2, 2)
  33. tasks.add(2, 2)
  34. - Keyword arguments are also supported::
  35. >>> add.s(2, 2, debug=True)
  36. tasks.add(2, 2, debug=True)
  37. - From any signature instance you can inspect the different fields::
  38. >>> s = add.subtask((2, 2), {'debug': True}, countdown=10)
  39. >>> s.args
  40. (2, 2)
  41. >>> s.kwargs
  42. {'debug': True}
  43. >>> s.options
  44. {'countdown': 10}
  45. - It supports the "Calling API" which means it supports ``delay`` and
  46. ``apply_async`` or being called directly.
  47. Calling the signature will execute the task inline in the current process::
  48. >>> add(2, 2)
  49. 4
  50. >>> add.s(2, 2)()
  51. 4
  52. ``delay`` is our beloved shortcut to ``apply_async`` taking star-arguments::
  53. >>> result = add.delay(2, 2)
  54. >>> result.get()
  55. 4
  56. ``apply_async`` takes the same arguments
  57. as the :meth:`Task.apply_async <@Task.apply_async>` method::
  58. >>> add.apply_async(args, kwargs, **options)
  59. >>> add.subtask(args, kwargs, **options).apply_async()
  60. >>> add.apply_async((2, 2), countdown=1)
  61. >>> add.subtask((2, 2), countdown=1).apply_async()
  62. - You can't define options with :meth:`~@Task.s`, but a chaining
  63. ``set`` call takes care of that::
  64. >>> add.s(2, 2).set(countdown=1)
  65. proj.tasks.add(2, 2)
  66. Partials
  67. --------
  68. With a signature, you can execute the task in a worker::
  69. >>> add.s(2, 2).delay()
  70. >>> add.s(2, 2).apply_async(countdown=1)
  71. Or you can call it directly in the current process::
  72. >>> add.s(2, 2)()
  73. 4
  74. Specifying additional args, kwargs or options to ``apply_async``/``delay``
  75. creates partials:
  76. - Any arguments added will be prepended to the args in the signature::
  77. >>> partial = add.s(2) # incomplete signature
  78. >>> partial.delay(4) # 2 + 4
  79. >>> partial.apply_async((4, )) # same
  80. - Any keyword arguments added will be merged with the kwargs in the signature,
  81. with the new keyword arguments taking precedence::
  82. >>> s = add.s(2, 2)
  83. >>> s.delay(debug=True) # -> add(2, 2, debug=True)
  84. >>> s.apply_async(kwargs={'debug': True}) # same
  85. - Any options added will be merged with the options in the signature,
  86. with the new options taking precedence::
  87. >>> s = add.subtask((2, 2), countdown=10)
  88. >>> s.apply_async(countdown=1) # countdown is now 1
  89. You can also clone signatures to create derivates:
  90. >>> s = add.s(2)
  91. proj.tasks.add(2)
  92. >>> s.clone(args=(4, ), kwargs={'debug': True})
  93. proj.tasks.add(2, 4, debug=True)
  94. Immutability
  95. ------------
  96. .. versionadded:: 3.0
  97. Partials are meant to be used with callbacks, any tasks linked or chord
  98. callbacks will be applied with the result of the parent task.
  99. Sometimes you want to specify a callback that does not take
  100. additional arguments, and in that case you can set the signature
  101. to be immutable::
  102. >>> add.apply_async((2, 2), link=reset_buffers.subtask(immutable=True))
  103. The ``.si()`` shortcut can also be used to create immutable signatures::
  104. >>> add.apply_async((2, 2), link=reset_buffers.si())
  105. Only the execution options can be set when a signature is immutable,
  106. so it's not possible to call the signature with partial args/kwargs.
  107. .. note::
  108. In this tutorial I sometimes use the prefix operator `~` to signatures.
  109. You probably shouldn't use it in your production code, but it's a handy shortcut
  110. when experimenting in the Python shell::
  111. >>> ~sig
  112. >>> # is the same as
  113. >>> sig.delay().get()
  114. .. _canvas-callbacks:
  115. Callbacks
  116. ---------
  117. .. versionadded:: 3.0
  118. Callbacks can be added to any task using the ``link`` argument
  119. to ``apply_async``::
  120. add.apply_async((2, 2), link=other_task.s())
  121. The callback will only be applied if the task exited successfully,
  122. and it will be applied with the return value of the parent task as argument.
  123. As I mentioned earlier, any arguments you add to a signature,
  124. will be prepended to the arguments specified by the signature itself!
  125. If you have the signature::
  126. >>> sig = add.s(10)
  127. then `sig.delay(result)` becomes::
  128. >>> add.apply_async(args=(result, 10))
  129. ...
  130. Now let's call our ``add`` task with a callback using partial
  131. arguments::
  132. >>> add.apply_async((2, 2), link=add.s(8))
  133. As expected this will first launch one task calculating :math:`2 + 2`, then
  134. another task calculating :math:`4 + 8`.
  135. The Primitives
  136. ==============
  137. .. versionadded:: 3.0
  138. .. topic:: Overview
  139. - ``group``
  140. The group primitive is a signature that takes a list of tasks that should
  141. be applied in parallel.
  142. - ``chain``
  143. The chain primitive lets us link together signatures so that one is called
  144. after the other, essentially forming a *chain* of callbacks.
  145. - ``chord``
  146. A chord is just like a group but with a callback. A chord consists
  147. of a header group and a body, where the body is a task that should execute
  148. after all of the tasks in the header are complete.
  149. - ``map``
  150. The map primitive works like the built-in ``map`` function, but creates
  151. a temporary task where a list of arguments is applied to the task.
  152. E.g. ``task.map([1, 2])`` results in a single task
  153. being called, applying the arguments in order to the task function so
  154. that the result is::
  155. res = [task(1), task(2)]
  156. - ``starmap``
  157. Works exactly like map except the arguments are applied as ``*args``.
  158. For example ``add.starmap([(2, 2), (4, 4)])`` results in a single
  159. task calling::
  160. res = [add(2, 2), add(4, 4)]
  161. - ``chunks``
  162. Chunking splits a long list of arguments into parts, e.g the operation::
  163. >>> items = zip(xrange(1000), xrange(1000)) # 1000 items
  164. >>> add.chunks(items, 10))
  165. will split the list of items into chunks of 10, resulting in 100
  166. tasks (each processing 10 items in sequence).
  167. The primitives are also signature objects themselves, so that they can be combined
  168. in any number of ways to compose complex workflows.
  169. Here's some examples:
  170. - Simple chain
  171. Here's a simple chain, the first task executes passing its return value
  172. to the next task in the chain, and so on.
  173. .. code-block:: python
  174. >>> from celery import chain
  175. # 2 + 2 + 4 + 8
  176. >>> res = chain(add.s(2, 2), add.s(4), add.s(8))()
  177. >>> res.get()
  178. 16
  179. This can also be written using pipes::
  180. >>> (add.s(2, 2) | add.s(4) | add.s(8))().get()
  181. 16
  182. - Immutable signatures
  183. Signatures can be partial so arguments can be
  184. added to the existing arguments, but you may not always want that,
  185. for example if you don't want the result of the previous task in a chain.
  186. In that case you can mark the signature as immutable, so that the arguments
  187. cannot be changed::
  188. >>> add.subtask((2, 2), immutable=True)
  189. There's also an ``.si`` shortcut for this::
  190. >>> add.si(2, 2)
  191. Now you can create a chain of independent tasks instead::
  192. >>> res = (add.si(2, 2) | add.si(4, 4) | add.s(8, 8))()
  193. >>> res.get()
  194. 16
  195. >>> res.parent.get()
  196. 8
  197. >>> res.parent.parent.get()
  198. 4
  199. - Simple group
  200. You can easily create a group of tasks to execute in parallel::
  201. >>> from celery import group
  202. >>> res = group(add.s(i, i) for i in xrange(10))()
  203. >>> res.get(timeout=1)
  204. [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
  205. - For primitives `.apply_async` is special...
  206. as it will create a temporary task to apply the tasks in,
  207. for example by *applying the group*::
  208. >>> g = group(add.s(i, i) for i in xrange(10))
  209. >>> g() # << applying
  210. the act of sending the messages for the tasks in the group
  211. will happen in the current process,
  212. but with ``.apply_async`` this happens in a temporary task
  213. instead::
  214. >>> g = group(add.s(i, i) for i in xrange(10))
  215. >>> g.apply_async()
  216. This is useful because you can e.g. specify a time for the
  217. messages in the group to be called::
  218. >>> g.apply_async(countdown=10)
  219. - Simple chord
  220. The chord primitive enables us to add callback to be called when
  221. all of the tasks in a group have finished executing, which is often
  222. required for algorithms that aren't embarrassingly parallel::
  223. >>> from celery import chord
  224. >>> res = chord((add.s(i, i) for i in xrange(10)), xsum.s())()
  225. >>> res.get()
  226. 90
  227. The above example creates 10 task that all start in parallel,
  228. and when all of them are complete the return values are combined
  229. into a list and sent to the ``xsum`` task.
  230. The body of a chord can also be immutable, so that the return value
  231. of the group is not passed on to the callback::
  232. >>> chord((import_contact.s(c) for c in contacts),
  233. ... notify_complete.si(import_id)).apply_async()
  234. Note the use of ``.si`` above which creates an immutable signature.
  235. - Blow your mind by combining
  236. Chains can be partial too::
  237. >>> c1 = (add.s(4) | mul.s(8))
  238. # (16 + 4) * 8
  239. >>> res = c1(16)
  240. >>> res.get()
  241. 160
  242. Which means that you can combine chains::
  243. # ((4 + 16) * 2 + 4) * 8
  244. >>> c2 = (add.s(4, 16) | mul.s(2) | (add.s(4) | mul.s(8)))
  245. >>> res = c2()
  246. >>> res.get()
  247. 352
  248. Chaining a group together with another task will automatically
  249. upgrade it to be a chord::
  250. >>> c3 = (group(add.s(i, i) for i in xrange(10)) | xsum.s())
  251. >>> res = c3()
  252. >>> res.get()
  253. 90
  254. Groups and chords accepts partial arguments too, so in a chain
  255. the return value of the previous task is forwarded to all tasks in the group::
  256. >>> new_user_workflow = (create_user.s() | group(
  257. ... import_contacts.s(),
  258. ... send_welcome_email.s()))
  259. ... new_user_workflow.delay(username='artv',
  260. ... first='Art',
  261. ... last='Vandelay',
  262. ... email='art@vandelay.com')
  263. If you don't want to forward arguments to the group then
  264. you can make the signatures in the group immutable::
  265. >>> res = (add.s(4, 4) | group(add.si(i, i) for i in xrange(10)))()
  266. >>> res.get()
  267. <GroupResult: de44df8c-821d-4c84-9a6a-44769c738f98 [
  268. bc01831b-9486-4e51-b046-480d7c9b78de,
  269. 2650a1b8-32bf-4771-a645-b0a35dcc791b,
  270. dcbee2a5-e92d-4b03-b6eb-7aec60fd30cf,
  271. 59f92e0a-23ea-41ce-9fad-8645a0e7759c,
  272. 26e1e707-eccf-4bf4-bbd8-1e1729c3cce3,
  273. 2d10a5f4-37f0-41b2-96ac-a973b1df024d,
  274. e13d3bdb-7ae3-4101-81a4-6f17ee21df2d,
  275. 104b2be0-7b75-44eb-ac8e-f9220bdfa140,
  276. c5c551a5-0386-4973-aa37-b65cbeb2624b,
  277. 83f72d71-4b71-428e-b604-6f16599a9f37]>
  278. >>> res.parent.get()
  279. 8
  280. .. _canvas-chain:
  281. Chains
  282. ------
  283. .. versionadded:: 3.0
  284. Tasks can be linked together, which in practice means adding
  285. a callback task::
  286. >>> res = add.apply_async((2, 2), link=mul.s(16))
  287. >>> res.get()
  288. 4
  289. The linked task will be applied with the result of its parent
  290. task as the first argument, which in the above case will result
  291. in ``mul(4, 16)`` since the result is 4.
  292. The results will keep track of what subtasks a task applies,
  293. and this can be accessed from the result instance::
  294. >>> res.children
  295. [<AsyncResult: 8c350acf-519d-4553-8a53-4ad3a5c5aeb4>]
  296. >>> res.children[0].get()
  297. 64
  298. The result instance also has a :meth:`~@AsyncResult.collect` method
  299. that treats the result as a graph, enabling you to iterate over
  300. the results::
  301. >>> list(res.collect())
  302. [(<AsyncResult: 7b720856-dc5f-4415-9134-5c89def5664e>, 4),
  303. (<AsyncResult: 8c350acf-519d-4553-8a53-4ad3a5c5aeb4>, 64)]
  304. By default :meth:`~@AsyncResult.collect` will raise an
  305. :exc:`~@IncompleteStream` exception if the graph is not fully
  306. formed (one of the tasks has not completed yet),
  307. but you can get an intermediate representation of the graph
  308. too::
  309. >>> for result, value in res.collect(intermediate=True)):
  310. ....
  311. You can link together as many tasks as you like,
  312. and signatures can be linked too::
  313. >>> s = add.s(2, 2)
  314. >>> s.link(mul.s(4))
  315. >>> s.link(log_result.s())
  316. You can also add *error callbacks* using the ``link_error`` argument::
  317. >>> add.apply_async((2, 2), link_error=log_error.s())
  318. >>> add.subtask((2, 2), link_error=log_error.s())
  319. Since exceptions can only be serialized when pickle is used
  320. the error callbacks take the id of the parent task as argument instead:
  321. .. code-block:: python
  322. from __future__ import print_function
  323. import os
  324. from proj.celery import app
  325. @app.task
  326. def log_error(task_id):
  327. result = app.AsyncResult(task_id)
  328. result.get(propagate=False) # make sure result written.
  329. with open(os.path.join('/var/errors', task_id), 'a') as fh:
  330. print('--\n\n{0} {1} {2}'.format(
  331. task_id, result.result, result.traceback), file=fh)
  332. To make it even easier to link tasks together there is
  333. a special signature called :class:`~celery.chain` that lets
  334. you chain tasks together:
  335. .. code-block:: python
  336. >>> from celery import chain
  337. >>> from proj.tasks import add, mul
  338. # (4 + 4) * 8 * 10
  339. >>> res = chain(add.s(4, 4), mul.s(8), mul.s(10))
  340. proj.tasks.add(4, 4) | proj.tasks.mul(8) | proj.tasks.mul(10)
  341. Calling the chain will call the tasks in the current process
  342. and return the result of the last task in the chain::
  343. >>> res = chain(add.s(4, 4), mul.s(8), mul.s(10))()
  344. >>> res.get()
  345. 640
  346. It also sets ``parent`` attributes so that you can
  347. work your way up the chain to get intermediate results::
  348. >>> res.parent.get()
  349. 64
  350. >>> res.parent.parent.get()
  351. 8
  352. >>> res.parent.parent
  353. <AsyncResult: eeaad925-6778-4ad1-88c8-b2a63d017933>
  354. Chains can also be made using the ``|`` (pipe) operator::
  355. >>> (add.s(2, 2) | mul.s(8) | mul.s(10)).apply_async()
  356. Graphs
  357. ~~~~~~
  358. In addition you can work with the result graph as a
  359. :class:`~celery.datastructures.DependencyGraph`:
  360. .. code-block:: python
  361. >>> res = chain(add.s(4, 4), mul.s(8), mul.s(10))()
  362. >>> res.parent.parent.graph
  363. 285fa253-fcf8-42ef-8b95-0078897e83e6(1)
  364. 463afec2-5ed4-4036-b22d-ba067ec64f52(0)
  365. 872c3995-6fa0-46ca-98c2-5a19155afcf0(2)
  366. 285fa253-fcf8-42ef-8b95-0078897e83e6(1)
  367. 463afec2-5ed4-4036-b22d-ba067ec64f52(0)
  368. You can even convert these graphs to *dot* format::
  369. >>> with open('graph.dot', 'w') as fh:
  370. ... res.parent.parent.graph.to_dot(fh)
  371. and create images:
  372. .. code-block:: bash
  373. $ dot -Tpng graph.dot -o graph.png
  374. .. image:: ../images/result_graph.png
  375. .. _canvas-group:
  376. Groups
  377. ------
  378. .. versionadded:: 3.0
  379. A group can be used to execute several tasks in parallel.
  380. The :class:`~celery.group` function takes a list of signatures::
  381. >>> from celery import group
  382. >>> from proj.tasks import add
  383. >>> group(add.s(2, 2), add.s(4, 4))
  384. (proj.tasks.add(2, 2), proj.tasks.add(4, 4))
  385. If you **call** the group, the tasks will be applied
  386. one after one in the current process, and a :class:`~celery.result.GroupResult`
  387. instance is returned which can be used to keep track of the results,
  388. or tell how many tasks are ready and so on::
  389. >>> g = group(add.s(2, 2), add.s(4, 4))
  390. >>> res = g()
  391. >>> res.get()
  392. [4, 8]
  393. However, if you call ``apply_async`` on the group it will
  394. send a special grouping task, so that the action of calling
  395. the tasks happens in a worker instead of the current process::
  396. >>> res = g.apply_async()
  397. >>> res.get()
  398. [4, 8]
  399. Group also supports iterators::
  400. >>> group(add.s(i, i) for i in xrange(100))()
  401. A group is a signature object, so it can be used in combination
  402. with other signatures.
  403. Group Results
  404. ~~~~~~~~~~~~~
  405. The group task returns a special result too,
  406. this result works just like normal task results, except
  407. that it works on the group as a whole::
  408. >>> from celery import group
  409. >>> from tasks import add
  410. >>> job = group([
  411. ... add.s(2, 2),
  412. ... add.s(4, 4),
  413. ... add.s(8, 8),
  414. ... add.s(16, 16),
  415. ... add.s(32, 32),
  416. ... ])
  417. >>> result = job.apply_async()
  418. >>> result.ready() # have all subtasks completed?
  419. True
  420. >>> result.successful() # were all subtasks successful?
  421. True
  422. >>> result.join()
  423. [4, 8, 16, 32, 64]
  424. The :class:`~celery.result.GroupResult` takes a list of
  425. :class:`~celery.result.AsyncResult` instances and operates on them as
  426. if it was a single task.
  427. It supports the following operations:
  428. * :meth:`~celery.result.GroupResult.successful`
  429. Return :const:`True` if all of the subtasks finished
  430. successfully (e.g. did not raise an exception).
  431. * :meth:`~celery.result.GroupResult.failed`
  432. Return :const:`True` if any of the subtasks failed.
  433. * :meth:`~celery.result.GroupResult.waiting`
  434. Return :const:`True` if any of the subtasks
  435. is not ready yet.
  436. * :meth:`~celery.result.GroupResult.ready`
  437. Return :const:`True` if all of the subtasks
  438. are ready.
  439. * :meth:`~celery.result.GroupResult.completed_count`
  440. Return the number of completed subtasks.
  441. * :meth:`~celery.result.GroupResult.revoke`
  442. Revoke all of the subtasks.
  443. * :meth:`~celery.result.GroupResult.iterate`
  444. Iterate over the return values of the subtasks
  445. as they finish, one by one.
  446. * :meth:`~celery.result.GroupResult.join`
  447. Gather the results for all of the subtasks
  448. and return a list with them ordered by the order of which they
  449. were called.
  450. .. _canvas-chord:
  451. Chords
  452. ------
  453. .. versionadded:: 2.3
  454. A chord is a task that only executes after all of the tasks in a group have
  455. finished executing.
  456. Let's calculate the sum of the expression
  457. :math:`1 + 1 + 2 + 2 + 3 + 3 ... n + n` up to a hundred digits.
  458. First you need two tasks, :func:`add` and :func:`tsum` (:func:`sum` is
  459. already a standard function):
  460. .. code-block:: python
  461. @celery.task
  462. def add(x, y):
  463. return x + y
  464. @celery.task
  465. def tsum(numbers):
  466. return sum(numbers)
  467. Now you can use a chord to calculate each addition step in parallel, and then
  468. get the sum of the resulting numbers::
  469. >>> from celery import chord
  470. >>> from tasks import add, tsum
  471. >>> chord(add.s(i, i)
  472. ... for i in xrange(100))(tsum.s()).get()
  473. 9900
  474. This is obviously a very contrived example, the overhead of messaging and
  475. synchronization makes this a lot slower than its Python counterpart::
  476. sum(i + i for i in xrange(100))
  477. The synchronization step is costly, so you should avoid using chords as much
  478. as possible. Still, the chord is a powerful primitive to have in your toolbox
  479. as synchronization is a required step for many parallel algorithms.
  480. Let's break the chord expression down:
  481. .. code-block:: python
  482. >>> callback = tsum.s()
  483. >>> header = [add.s(i, i) for i in range(100)]
  484. >>> result = chord(header)(callback)
  485. >>> result.get()
  486. 9900
  487. Remember, the callback can only be executed after all of the tasks in the
  488. header have returned. Each step in the header is executed as a task, in
  489. parallel, possibly on different nodes. The callback is then applied with
  490. the return value of each task in the header. The task id returned by
  491. :meth:`chord` is the id of the callback, so you can wait for it to complete
  492. and get the final return value (but remember to :ref:`never have a task wait
  493. for other tasks <task-synchronous-subtasks>`)
  494. .. _chord-errors:
  495. Error handling
  496. ~~~~~~~~~~~~~~
  497. So what happens if one of the tasks raises an exception?
  498. This was not documented for some time and before version 3.1
  499. the exception value will be forwarded to the chord callback.
  500. From 3.1 errors will propagate to the callback, so the callback will not be executed
  501. instead the callback changes to failure state, and the error is set
  502. to the :exc:`~@ChordError` exception:
  503. .. code-block:: python
  504. >>> c = chord([add.s(4, 4), raising_task.s(), add.s(8, 8)])
  505. >>> result = c()
  506. >>> result.get()
  507. Traceback (most recent call last):
  508. File "<stdin>", line 1, in <module>
  509. File "*/celery/result.py", line 120, in get
  510. interval=interval)
  511. File "*/celery/backends/amqp.py", line 150, in wait_for
  512. raise self.exception_to_python(meta['result'])
  513. celery.exceptions.ChordError: Dependency 97de6f3f-ea67-4517-a21c-d867c61fcb47
  514. raised ValueError('something something',)
  515. If you're running 3.0.14 or later you can enable the new behavior via
  516. the :setting:`CELERY_CHORD_PROPAGATES` setting::
  517. CELERY_CHORD_PROPAGATES = True
  518. While the traceback may be different depending on which result backend is
  519. being used, you can see the error description includes the id of the task that failed
  520. and a string representation of the original exception. You can also
  521. find the original traceback in ``result.traceback``.
  522. Note that the rest of the tasks will still execute, so the third task
  523. (``add.s(8, 8)``) is still executed even though the middle task failed.
  524. Also the :exc:`~@ChordError` only shows the task that failed
  525. first (in time): it does not respect the ordering of the header group.
  526. .. _chord-important-notes:
  527. Important Notes
  528. ~~~~~~~~~~~~~~~
  529. Tasks used within a chord must *not* ignore their results. In practice this
  530. means that you must enable a :const:`CELERY_RESULT_BACKEND` in order to use
  531. chords. Additionally, if :const:`CELERY_IGNORE_RESULT` is set to :const:`True`
  532. in your configuration, be sure that the individual tasks to be used within
  533. the chord are defined with :const:`ignore_result=False`. This applies to both
  534. Task subclasses and decorated tasks.
  535. Example Task subclass:
  536. .. code-block:: python
  537. class MyTask(Task):
  538. abstract = True
  539. ignore_result = False
  540. Example decorated task:
  541. .. code-block:: python
  542. @celery.task(ignore_result=False)
  543. def another_task(project):
  544. do_something()
  545. By default the synchronization step is implemented by having a recurring task
  546. poll the completion of the group every second, calling the signature when
  547. ready.
  548. Example implementation:
  549. .. code-block:: python
  550. from celery import maybe_signature
  551. @app.task(bind=True)
  552. def unlock_chord(self, group, callback, interval=1, max_retries=None):
  553. if group.ready():
  554. return maybe_signature(callback).delay(group.join())
  555. raise self.retry(countdown=interval, max_retries=max_retries)
  556. This is used by all result backends except Redis and Memcached, which
  557. increment a counter after each task in the header, then applying the callback
  558. when the counter exceeds the number of tasks in the set. *Note:* chords do not
  559. properly work with Redis before version 2.2; you will need to upgrade to at
  560. least 2.2 to use them.
  561. The Redis and Memcached approach is a much better solution, but not easily
  562. implemented in other backends (suggestions welcome!).
  563. .. note::
  564. If you are using chords with the Redis result backend and also overriding
  565. the :meth:`Task.after_return` method, you need to make sure to call the
  566. super method or else the chord callback will not be applied.
  567. .. code-block:: python
  568. def after_return(self, *args, **kwargs):
  569. do_something()
  570. super(MyTask, self).after_return(*args, **kwargs)
  571. .. _canvas-map:
  572. Map & Starmap
  573. -------------
  574. :class:`~celery.map` and :class:`~celery.starmap` are built-in tasks
  575. that calls the task for every element in a sequence.
  576. They differ from group in that
  577. - only one task message is sent
  578. - the operation is sequential.
  579. For example using ``map``:
  580. .. code-block:: python
  581. >>> from proj.tasks import add
  582. >>> ~xsum.map([range(10), range(100)])
  583. [45, 4950]
  584. is the same as having a task doing:
  585. .. code-block:: python
  586. @celery.task
  587. def temp():
  588. return [xsum(range(10)), xsum(range(100))]
  589. and using ``starmap``::
  590. >>> ~add.starmap(zip(range(10), range(10)))
  591. [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
  592. is the same as having a task doing:
  593. .. code-block:: python
  594. @celery.task
  595. def temp():
  596. return [add(i, i) for i in range(10)]
  597. Both ``map`` and ``starmap`` are signature objects, so they can be used as
  598. other signatures and combined in groups etc., for example
  599. to call the starmap after 10 seconds::
  600. >>> add.starmap(zip(range(10), range(10))).apply_async(countdown=10)
  601. .. _canvas-chunks:
  602. Chunks
  603. ------
  604. Chunking lets you divide an iterable of work into pieces, so that if
  605. you have one million objects, you can create 10 tasks with hundred
  606. thousand objects each.
  607. Some may worry that chunking your tasks results in a degradation
  608. of parallelism, but this is rarely true for a busy cluster
  609. and in practice since you are avoiding the overhead of messaging
  610. it may considerably increase performance.
  611. To create a chunks signature you can use :meth:`@Task.chunks`:
  612. .. code-block:: python
  613. >>> add.chunks(zip(range(100), range(100)), 10)
  614. As with :class:`~celery.group` the act of sending the messages for
  615. the chunks will happen in the current process when called:
  616. .. code-block:: python
  617. >>> from proj.tasks import add
  618. >>> res = add.chunks(zip(range(100), range(100)), 10)()
  619. >>> res.get()
  620. [[0, 2, 4, 6, 8, 10, 12, 14, 16, 18],
  621. [20, 22, 24, 26, 28, 30, 32, 34, 36, 38],
  622. [40, 42, 44, 46, 48, 50, 52, 54, 56, 58],
  623. [60, 62, 64, 66, 68, 70, 72, 74, 76, 78],
  624. [80, 82, 84, 86, 88, 90, 92, 94, 96, 98],
  625. [100, 102, 104, 106, 108, 110, 112, 114, 116, 118],
  626. [120, 122, 124, 126, 128, 130, 132, 134, 136, 138],
  627. [140, 142, 144, 146, 148, 150, 152, 154, 156, 158],
  628. [160, 162, 164, 166, 168, 170, 172, 174, 176, 178],
  629. [180, 182, 184, 186, 188, 190, 192, 194, 196, 198]]
  630. while calling ``.apply_async`` will create a dedicated
  631. task so that the individual tasks are applied in a worker
  632. instead::
  633. >>> add.chunks(zip(range(100), range(100), 10)).apply_async()
  634. You can also convert chunks to a group::
  635. >>> group = add.chunks(zip(range(100), range(100), 10)).group()
  636. and with the group skew the countdown of each task by increments
  637. of one::
  638. >>> group.skew(start=1, stop=10)()
  639. which means that the first task will have a countdown of 1, the second
  640. a countdown of 2 and so on.