| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944 | .. _guide-canvas:============================= Canvas: Designing Workflows=============================.. contents::    :local:    :depth: 2.. _canvas-subtasks:Subtasks========.. versionadded:: 2.0You just learned how to call a task using the tasks ``delay`` methodin the :ref:`calling <guide-calling>` guide, and this is often all you need,but sometimes you may want to pass the signature of a task invocation toanother process or as an argument to another function, for this Celery usessomething called *subtasks*.A :func:`~celery.subtask` wraps the arguments, keyword arguments, and execution optionsof a single task invocation in a way such that it can be passed to functionsor even serialized and sent across the wire.- You can create a subtask for the ``add`` task using its name like this::        >>> from celery import subtask        >>> subtask('tasks.add', args=(2, 2), countdown=10)        tasks.add(2, 2)  This subtask has a signature of arity 2 (two arguments): ``(2, 2)``,  and sets the countdown execution option to 10.- or you can create one using the task's ``subtask`` method::        >>> add.subtask((2, 2), countdown=10)        tasks.add(2, 2)- There is also a shortcut using star arguments::        >>> add.s(2, 2)        tasks.add(2, 2)- Keyword arguments are also supported::        >>> add.s(2, 2, debug=True)        tasks.add(2, 2, debug=True)- From any subtask instance you can inspect the different fields::        >>> s = add.subtask((2, 2), {'debug': True}, countdown=10)        >>> s.args        (2, 2)        >>> s.kwargs        {'debug': True}        >>> s.options        {'countdown': 10}- It supports the "Calling API" which means it takes the same arguments  as the :meth:`~@Task.apply_async` method::    >>> add.apply_async(args, kwargs, **options)    >>> add.subtask(args, kwargs, **options).apply_async()    >>> add.apply_async((2, 2), countdown=1)    >>> add.subtask((2, 2), countdown=1).apply_async()- You can't define options with :meth:`~@Task.s`, but a chaining  ``set`` call takes care of that::    >>> add.s(2, 2).set(countdown=1)    proj.tasks.add(2, 2)Partials--------A subtask can be applied too::    >>> add.s(2, 2).delay()    >>> add.s(2, 2).apply_async(countdown=1)Specifying additional args, kwargs or options to ``apply_async``/``delay``creates partials:- Any arguments added will be prepended to the args in the signature::    >>> partial = add.s(2)          # incomplete signature    >>> partial.delay(4)            # 2 + 4    >>> partial.apply_async((4, ))  # same- Any keyword arguments added will be merged with the kwargs in the signature,  with the new keyword arguments taking precedence::    >>> s = add.s(2, 2)    >>> s.delay(debug=True)                    # -> add(2, 2, debug=True)    >>> s.apply_async(kwargs={'debug': True})  # same- Any options added will be merged with the options in the signature,  with the new options taking precedence::    >>> s = add.subtask((2, 2), countdown=10)    >>> s.apply_async(countdown=1)  # countdown is now 1You can also clone subtasks to augment these::    >>> s = add.s(2)    proj.tasks.add(2)    >>> s.clone(args=(4, ), kwargs={'debug': True})    proj.tasks.add(2, 4, debug=True)Immutability------------.. versionadded:: 3.0Partials are meant to be used with callbacks, any tasks linked or chordcallbacks will be applied with the result of the parent task.Sometimes you want to specify a callback that does not takeadditional arguments, and in that case you can set the subtaskto be immutable::    >>> add.apply_async((2, 2), link=reset_buffers.subtask(immutable=True))The ``.si()`` shortcut can also be used to create immutable subtasks::    >>> add.apply_async((2, 2), link=reset_buffers.si())Only the execution options can be set when a subtask is immutable,so it's not possible to call the subtask with partial args/kwargs... note::    In this tutorial I sometimes use the prefix operator `~` to subtasks.    You probably shouldn't use it in your production code, but it's a handy shortcut    when experimenting in the Python shell::        >>> ~subtask        >>> # is the same as        >>> subtask.delay().get().. _canvas-callbacks:Callbacks---------.. versionadded:: 3.0Callbacks can be added to any task using the ``link`` argumentto ``apply_async``::    add.apply_async((2, 2), link=other_task.subtask())The callback will only be applied if the task exited successfully,and it will be applied with the return value of the parent task as argument.As I mentioned earlier, any arguments you add to `subtask`,will be prepended to the arguments specified by the subtask itself!If you have the subtask::    >>> add.subtask(args=(10, ))`subtask.delay(result)` becomes::    >>> add.apply_async(args=(result, 10))...Now let's call our ``add`` task with a callback using partialarguments::    >>> add.apply_async((2, 2), link=add.subtask((8, )))As expected this will first launch one task calculating :math:`2 + 2`, thenanother task calculating :math:`4 + 8`.The Primitives==============.. versionadded:: 3.0.. topic:: Overview    - ``group``        The group primitive is a subtask that takes a list of tasks that should        be applied in parallel.    - ``chain``        The chain primitive lets us link together subtasks so that one is called        after the other, essentially forming a *chain* of callbacks.    - ``chord``        A chord is just like a group but with a callback.  A chord consists        of a header group and a body,  where the body is a task that should execute        after all of the tasks in the header are complete.    - ``map``        The map primitive works like the built-in ``map`` function, but creates        a temporary task where a list of arguments is applied to the task.        E.g. ``task.map([1, 2])`` results in a single task        being called, applying the arguments in order to the task function so        that the result is::            res = [task(1), task(2)]    - ``starmap``        Works exactly like map except the arguments are applied as ``*args``.        For example ``add.starmap([(2, 2), (4, 4)])`` results in a single        task calling::            res = [add(2, 2), add(4, 4)]    - ``chunks``        Chunking splits a long list of arguments into parts, e.g the operation::            >>> add.chunks(zip(xrange(1000), xrange(1000), 10))        will create 10 tasks that apply 100 items each.The primitives are also subtasks themselves, so that they can be combinedin any number of ways to compose complex workflows.Here's some examples:- Simple chain    Here's a simple chain, the first task executes passing its return value    to the next task in the chain, and so on.    .. code-block:: python        >>> from celery import chain        # 2 + 2 + 4 + 8        >>> res = chain(add.s(2, 2), add.s(4), add.s(8))()        >>> res.get()        16    This can also be written using pipes::        >>> (add.s(2, 2) | add.s(4) | add.s(8))().get()        16- Immutable subtasks    Signatures can be partial so arguments can be    added to the existing arguments, but you may not always want that,    for example if you don't want the result of the previous task in a chain.    In that case you can mark the subtask as immutable, so that the arguments    cannot be changed::        >>> add.subtask((2, 2), immutable=True)    There's also an ``.si`` shortcut for this::        >>> add.si(2, 2)    Now you can create a chain of independent tasks instead::        >>> res = (add.si(2, 2), add.si(4, 4), add.s(8, 8))()        >>> res.get()        16        >>> res.parent.get()        8        >>> res.parent.parent.get()        4- Simple group    You can easily create a group of tasks to execute in parallel::        >>> from celery import group        >>> res = group(add.s(i, i) for i in xrange(10))()        >>> res.get(timeout=1)        [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]    - For primitives `.apply_async` is special...        as it will create a temporary task to apply the tasks in,        for example by *applying the group*::            >>> g = group(add.s(i, i) for i in xrange(10))            >>> g()  # << applying        the act of sending the messages for the tasks in the group        will happen in the current process,        but with ``.apply_async`` this happens in a temporary task        instead::            >>> g = group(add.s(i, i) for i in xrange(10))            >>> g.apply_async()        This is useful because you can e.g. specify a time for the        messages in the group to be called::            >>> g.apply_async(countdown=10)- Simple chord    The chord primitive enables us to add callback to be called when    all of the tasks in a group have finished executing, which is often    required for algorithms that aren't embarrassingly parallel::        >>> from celery import chord        >>> res = chord((add.s(i, i) for i in xrange(10)), xsum.s())()        >>> res.get()        90    The above example creates 10 task that all start in parallel,    and when all of them are complete the return values are combined    into a list and sent to the ``xsum`` task.    The body of a chord can also be immutable, so that the return value    of the group is not passed on to the callback::        >>> chord((import_contact.s(c) for c in contacts),        ...       notify_complete.si(import_id)).apply_async()    Note the use of ``.si`` above which creates an immutable subtask.- Blow your mind by combining    Chains can be partial too::        >>> c1 = (add.s(4) | mul.s(8))        # (16 + 4) * 8        >>> res = c1(16)        >>> res.get()        160    Which means that you can combine chains::        # ((4 + 16) * 2 + 4) * 8        >>> c2 = (add.s(4, 16) | mul.s(2) | (add.s(4) | mul.s(8)))        >>> res = c2()        >>> res.get()        352    Chaining a group together with another task will automatically    upgrade it to be a chord::        >>> c3 = (group(add.s(i, i) for i in xrange(10) | xsum.s()))        >>> res = c3()        >>> res.get()        90    Groups and chords accepts partial arguments too, so in a chain    the return value of the previous task is forwarded to all tasks in the group::        >>> new_user_workflow = (create_user.s() | group(        ...                      import_contacts.s(),        ...                      send_welcome_email.s()))        ... new_user_workflow.delay(username='artv',        ...                         first='Art',        ...                         last='Vandelay',        ...                         email='art@vandelay.com')    If you don't want to forward arguments to the group then    you can make the subtasks in the group immutable::        >>> res = (add.s(4, 4) | group(add.si(i, i) for i in xrange(10)))()        >>> res.get()        <GroupResult: de44df8c-821d-4c84-9a6a-44769c738f98 [            bc01831b-9486-4e51-b046-480d7c9b78de,            2650a1b8-32bf-4771-a645-b0a35dcc791b,            dcbee2a5-e92d-4b03-b6eb-7aec60fd30cf,            59f92e0a-23ea-41ce-9fad-8645a0e7759c,            26e1e707-eccf-4bf4-bbd8-1e1729c3cce3,            2d10a5f4-37f0-41b2-96ac-a973b1df024d,            e13d3bdb-7ae3-4101-81a4-6f17ee21df2d,            104b2be0-7b75-44eb-ac8e-f9220bdfa140,            c5c551a5-0386-4973-aa37-b65cbeb2624b,            83f72d71-4b71-428e-b604-6f16599a9f37]>        >>> res.parent.get()        8.. _canvas-chain:Chains------.. versionadded:: 3.0Tasks can be linked together, which in practice means addinga callback task::    >>> res = add.apply_async((2, 2), link=mul.s(16))    >>> res.get()    4The linked task will be applied with the result of its parenttask as the first argument, which in the above case will resultin ``mul(4, 16)`` since the result is 4.The results will keep track of what subtasks a task applies,and this can be accessed from the result instance::    >>> res.children    [<AsyncResult: 8c350acf-519d-4553-8a53-4ad3a5c5aeb4>]    >>> res.children[0].get()    64The result instance also has a :meth:`~@AsyncResult.collect` methodthat treats the result as a graph, enabling you to iterate overthe results::    >>> list(res.collect())    [(<AsyncResult: 7b720856-dc5f-4415-9134-5c89def5664e>, 4),     (<AsyncResult: 8c350acf-519d-4553-8a53-4ad3a5c5aeb4>, 64)]By default :meth:`~@AsyncResult.collect` will raise an:exc:`~@IncompleteStream` exception if the graph is not fullyformed (one of the tasks has not completed yet),but you can get an intermediate representation of the graphtoo::    >>> for result, value in res.collect(intermediate=True)):    ....You can link together as many tasks as you like,and subtasks can be linked too::    >>> s = add.s(2, 2)    >>> s.link(mul.s(4))    >>> s.link(log_result.s())You can also add *error callbacks* using the ``link_error`` argument::    >>> add.apply_async((2, 2), link_error=log_error.s())    >>> add.subtask((2, 2), link_error=log_error.s())Since exceptions can only be serialized when pickle is usedthe error callbacks take the id of the parent task as argument instead:.. code-block:: python    from __future__ import print_function    import os    from proj.celery import celery    @celery.task    def log_error(task_id):        result = celery.AsyncResult(task_id)        result.get(propagate=False)  # make sure result written.        with open(os.path.join('/var/errors', task_id), 'a') as fh:            print('--\n\n{0} {1} {2}'.format(                task_id, result.result, result.traceback), file=fh)To make it even easier to link tasks together there isa special subtask called :class:`~celery.chain` that letsyou chain tasks together:.. code-block:: python    >>> from celery import chain    >>> from proj.tasks import add, mul    # (4 + 4) * 8 * 10    >>> res = chain(add.s(4, 4), mul.s(8), mul.s(10))    proj.tasks.add(4, 4) | proj.tasks.mul(8) | proj.tasks.mul(10)Calling the chain will call the tasks in the current processand return the result of the last task in the chain::    >>> res = chain(add.s(4, 4), mul.s(8), mul.s(10))()    >>> res.get()    640And calling ``apply_async`` will create a dedicatedtask so that the act of calling the chain happensin a worker::    >>> res = chain(add.s(4, 4), mul.s(8), mul.s(10)).apply_async()    >>> res.get()    640It also sets ``parent`` attributes so that you canwork your way up the chain to get intermediate results::    >>> res.parent.get()    64    >>> res.parent.parent.get()    8    >>> res.parent.parent    <AsyncResult: eeaad925-6778-4ad1-88c8-b2a63d017933>Chains can also be made using the ``|`` (pipe) operator::    >>> (add.s(2, 2) | mul.s(8) | mul.s(10)).apply_async()Graphs~~~~~~In addition you can work with the result graph as a:class:`~celery.datastructures.DependencyGraph`:.. code-block:: python    >>> res = chain(add.s(4, 4), mul.s(8), mul.s(10))()    >>> res.parent.parent.graph    285fa253-fcf8-42ef-8b95-0078897e83e6(1)        463afec2-5ed4-4036-b22d-ba067ec64f52(0)    872c3995-6fa0-46ca-98c2-5a19155afcf0(2)        285fa253-fcf8-42ef-8b95-0078897e83e6(1)            463afec2-5ed4-4036-b22d-ba067ec64f52(0)You can even convert these graphs to *dot* format::    >>> with open('graph.dot', 'w') as fh:    ...     res.parent.parent.graph.to_dot(fh)and create images:.. code-block:: bash    $ dot -Tpng graph.dot -o graph.png.. image:: ../images/result_graph.png.. _canvas-group:Groups------.. versionadded:: 3.0A group can be used to execute several tasks in parallel.The :class:`~celery.group` function takes a list of subtasks::    >>> from celery import group    >>> from proj.tasks import add    >>> group(add.s(2, 2), add.s(4, 4))    (proj.tasks.add(2, 2), proj.tasks.add(4, 4))If you **call** the group, the tasks will be appliedone after one in the current process, and a :class:`~@TaskSetResult`instance is returned which can be used to keep track of the results,or tell how many tasks are ready and so on::    >>> g = group(add.s(2, 2), add.s(4, 4))    >>> res = g()    >>> res.get()    [4, 8]However, if you call ``apply_async`` on the group it willsend a special grouping task, so that the action of callingthe tasks happens in a worker instead of the current process::    >>> res = g.apply_async()    >>> res.get()    [4, 8]Group also supports iterators::    >>> group(add.s(i, i) for i in xrange(100))()A group is a subtask instance, so it can be used in combinationwith other subtasks.Group Results~~~~~~~~~~~~~The group task returns a special result too,this result works just like normal task results, exceptthat it works on the group as a whole::    >>> from celery import group    >>> from tasks import add    >>> job = group([    ...             add.subtask((2, 2)),    ...             add.subtask((4, 4)),    ...             add.subtask((8, 8)),    ...             add.subtask((16, 16)),    ...             add.subtask((32, 32)),    ... ])    >>> result = job.apply_async()    >>> result.ready()  # have all subtasks completed?    True    >>> result.successful() # were all subtasks successful?    True    >>> result.join()    [4, 8, 16, 32, 64]The :class:`~celery.result.GroupResult` takes a list of:class:`~celery.result.AsyncResult` instances and operates on them asif it was a single task.It supports the following operations:* :meth:`~celery.result.GroupResult.successful`    Returns :const:`True` if all of the subtasks finished    successfully (e.g. did not raise an exception).* :meth:`~celery.result.GroupResult.failed`    Returns :const:`True` if any of the subtasks failed.* :meth:`~celery.result.GroupResult.waiting`    Returns :const:`True` if any of the subtasks    is not ready yet.* :meth:`~celery.result.GroupResult.ready`    Return :const:`True` if all of the subtasks    are ready.* :meth:`~celery.result.GroupResult.completed_count`    Returns the number of completed subtasks.* :meth:`~celery.result.GroupResult.revoke`    Revokes all of the subtasks.* :meth:`~celery.result.GroupResult.iterate`    Iterates over the return values of the subtasks    as they finish, one by one.* :meth:`~celery.result.GroupResult.join`    Gather the results for all of the subtasks    and return a list with them ordered by the order of which they    were called... _canvas-chord:Chords------.. versionadded:: 2.3A chord is a task that only executes after all of the tasks in a taskset havefinished executing.Let's calculate the sum of the expression:math:`1 + 1 + 2 + 2 + 3 + 3 ... n + n` up to a hundred digits.First you need two tasks, :func:`add` and :func:`tsum` (:func:`sum` isalready a standard function):.. code-block:: python    @celery.task    def add(x, y):        return x + y    @celery.task    def tsum(numbers):        return sum(numbers)Now you can use a chord to calculate each addition step in parallel, and thenget the sum of the resulting numbers::    >>> from celery import chord    >>> from tasks import add, tsum    >>> chord(add.s(i, i)    ...       for i in xrange(100))(tsum.s()).get()    9900This is obviously a very contrived example, the overhead of messaging andsynchronization makes this a lot slower than its Python counterpart::    sum(i + i for i in xrange(100))The synchronization step is costly, so you should avoid using chords as muchas possible. Still, the chord is a powerful primitive to have in your toolboxas synchronization is a required step for many parallel algorithms.Let's break the chord expression down:.. code-block:: python    >>> callback = tsum.subtask()    >>> header = [add.subtask((i, i)) for i in xrange(100)]    >>> result = chord(header)(callback)    >>> result.get()    9900Remember, the callback can only be executed after all of the tasks in theheader have returned.  Each step in the header is executed as a task, inparallel, possibly on different nodes.  The callback is then applied withthe return value of each task in the header.  The task id returned by:meth:`chord` is the id of the callback, so you can wait for it to completeand get the final return value (but remember to :ref:`never have a task waitfor other tasks <task-synchronous-subtasks>`).. _chord-errors:Error handling~~~~~~~~~~~~~~So what happens if one of the tasks raises an exception?This was not documented for some time and before version 3.1the exception value will be forwarded to the chord callback.From 3.1 errors will propagate to the callback, so the callback will not be executedinstead the callback changes to failure state, and the error is setto the :exc:`~celery.exceptions.ChordError` exception:.. code-block:: python    >>> c = chord([add.s(4, 4), raising_task.s(), add.s(8, 8)])    >>> result = c()    >>> result.get()    Traceback (most recent call last):      File "<stdin>", line 1, in <module>      File "*/celery/result.py", line 120, in get        interval=interval)      File "*/celery/backends/amqp.py", line 150, in wait_for        raise self.exception_to_python(meta['result'])    celery.exceptions.ChordError: Dependency 97de6f3f-ea67-4517-a21c-d867c61fcb47        raised ValueError('something something',)If you're running 3.0.14 or later you can enable the new behavior viathe :setting:`CELERY_CHORD_PROPAGATES` setting::    CELERY_CHORD_PROPAGATES = TrueWhile the traceback may be different depending on which result backend isbeing used, you can see the error description includes the id of the task that failedand a string representation of the original exception.  You can alsofind the original traceback in ``result.traceback``.Note that the rest of the tasks will still execute, so the third task(``add.s(8, 8)``) is still executed even though the middle task failed.Also the :exc:`~celery.exceptions.ChordError` only shows the task that failedfirst (in time): it does not respect the ordering of the header group... _chord-important-notes:Important Notes~~~~~~~~~~~~~~~Tasks used within a chord must *not* ignore their results. In practice thismeans that you must enable a :const:`CELERY_RESULT_BACKEND` in order to usechords. Additionally, if :const:`CELERY_IGNORE_RESULT` is set to :const:`True`in your configuration, be sure that the individual tasks to be used withinthe chord are defined with :const:`ignore_result=False`. This applies to bothTask subclasses and decorated tasks.Example Task subclass:.. code-block:: python    class MyTask(Task):        abstract = True        ignore_result = FalseExample decorated task:.. code-block:: python    @celery.task(ignore_result=False)    def another_task(project):        do_something()By default the synchronization step is implemented by having a recurring taskpoll the completion of the taskset every second, calling the subtask whenready.Example implementation:.. code-block:: python    def unlock_chord(taskset, callback, interval=1, max_retries=None):        if taskset.ready():            return subtask(callback).delay(taskset.join())        raise unlock_chord.retry(countdown=interval, max_retries=max_retries)This is used by all result backends except Redis and Memcached, whichincrement a counter after each task in the header, then applying the callbackwhen the counter exceeds the number of tasks in the set. *Note:* chords do notproperly work with Redis before version 2.2; you will need to upgrade to atleast 2.2 to use them.The Redis and Memcached approach is a much better solution, but not easilyimplemented in other backends (suggestions welcome!)... note::    If you are using chords with the Redis result backend and also overriding    the :meth:`Task.after_return` method, you need to make sure to call the    super method or else the chord callback will not be applied.    .. code-block:: python        def after_return(self, *args, **kwargs):            do_something()            super(MyTask, self).after_return(*args, **kwargs).. _canvas-map:Map & Starmap-------------:class:`~celery.map` and :class:`~celery.starmap` are built-in tasksthat calls the task for every element in a sequence.They differ from group in that- only one task message is sent- the operation is sequential.For example using ``map``:.. code-block:: python    >>> from proj.tasks import add    >>> ~xsum.map([range(10), range(100)])    [45, 4950]is the same as having a task doing:.. code-block:: python    @celery.task    def temp():        return [xsum(range(10)), xsum(range(100))]and using ``starmap``::    >>> ~add.starmap(zip(range(10), range(10)))    [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]is the same as having a task doing:.. code-block:: python    @celery.task    def temp():        return [add(i, i) for i in range(10)]Both ``map`` and ``starmap`` are subtasks, so they can be used asother subtasks and combined in groups etc., for exampleto call the starmap after 10 seconds::    >>> add.starmap(zip(range(10), range(10))).apply_async(countdown=10).. _canvas-chunks:Chunks------Chunking lets you divide an iterable of work into pieces, so that ifyou have one million objects, you can create 10 tasks with hundredthousand objects each.Some may worry that chunking your tasks results in a degradationof parallelism, but this is rarely true for a busy clusterand in practice since you are avoiding the overhead  of messagingit may considerably increase performance.To create a chunks subtask you can use :meth:`@Task.chunks`:.. code-block:: python    >>> add.chunks(zip(range(100), range(100)), 10)As with :class:`~celery.group` the act of **calling**the chunks will call the tasks in the current process:.. code-block:: python    >>> from proj.tasks import add    >>> res = add.chunks(zip(range(100), range(100)), 10)()    >>> res.get()    [[0, 2, 4, 6, 8, 10, 12, 14, 16, 18],     [20, 22, 24, 26, 28, 30, 32, 34, 36, 38],     [40, 42, 44, 46, 48, 50, 52, 54, 56, 58],     [60, 62, 64, 66, 68, 70, 72, 74, 76, 78],     [80, 82, 84, 86, 88, 90, 92, 94, 96, 98],     [100, 102, 104, 106, 108, 110, 112, 114, 116, 118],     [120, 122, 124, 126, 128, 130, 132, 134, 136, 138],     [140, 142, 144, 146, 148, 150, 152, 154, 156, 158],     [160, 162, 164, 166, 168, 170, 172, 174, 176, 178],     [180, 182, 184, 186, 188, 190, 192, 194, 196, 198]]while calling ``.apply_async`` will create a dedicatedtask so that the individual tasks are applied in a workerinstead::    >>> add.chunks(zip(range(100), range(100), 10)).apply_async()You can also convert chunks to a group::    >>> group = add.chunks(zip(range(100), range(100), 10)).group()and with the group skew the countdown of each task by incrementsof one::    >>> group.skew(start=1, stop=10)()which means that the first task will have a countdown of 1, the seconda countdown of 2 and so on.
 |