next-steps.rst 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473
  1. ============
  2. Next Steps
  3. ============
  4. The :ref:`first-steps` guide is intentionally minimal. In this guide
  5. we will demonstrate what Celery offers in more detail, including
  6. how to add Celery support for your application and library.
  7. .. contents::
  8. :local:
  9. Our Project
  10. ===========
  11. Project layout::
  12. proj/__init__.py
  13. /celery.py
  14. /tasks.py
  15. :file:`proj/celery.py`
  16. ----------------------
  17. .. literalinclude:: ../../examples/next-steps/proj/celery.py
  18. :language: python
  19. In this module we created our :class:`@Celery` instance (sometimes
  20. referred to as the *app*). To use Celery within your project
  21. you simply import this instance.
  22. - The ``broker`` argument specifies the URL of the broker to use.
  23. See :ref:`celerytut-broker` for more information.
  24. - The ``backend`` argument specifies the result backend to use,
  25. It's used to keep track of task state and results.
  26. While results are disabled by default we use the amqp backend here
  27. to demonstrate how retrieving the results work, you may want to use
  28. a different backend for your application, as they all have different
  29. strenghts and weaknesses. If you don't need results it's best
  30. to disable them. Results can also be disabled for individual tasks
  31. by setting the ``@task(ignore_result=True)`` option.
  32. See :ref:`celerytut-keeping-results` for more information.
  33. - The ``include`` argument is a list of modules to import when
  34. the worker starts. We need to add our tasks module here so
  35. that the worker is able to find our tasks.
  36. :file:`proj/tasks.py`
  37. ---------------------
  38. .. literalinclude:: ../../examples/next-steps/proj/tasks.py
  39. :language: python
  40. Starting the worker
  41. ===================
  42. The :program:`celery` program can be used to start the worker::
  43. $ celery worker --app=proj -l info
  44. The :option:`--app` argument specifies the Celery app instance to use,
  45. it must be in the form of ``module.path:celery``, where the part before the colon
  46. is the name of the module, and the attribute name comes last.
  47. If a package name is specified instead it will automatically
  48. try to find a ``celery`` module in that package, and if the name
  49. is a module it will try to find a ``celery`` attribute in that module.
  50. This means that the following all results in the same::
  51. $ celery --app=proj
  52. $ celery --app=proj.celery:
  53. $ celery --app=proj.celery:celery
  54. Subtasks
  55. ========
  56. A :func:`~celery.subtask` wraps the signature of a single task invocation:
  57. arguments, keyword arguments and execution options.
  58. A subtask for the ``add`` task can be created like this::
  59. >>> from celery import subtask
  60. >>> subtask(add.name, args=(4, 4))
  61. or you can create one from the task itself::
  62. >>> from proj.tasks import add
  63. >>> add.subtask(args=(4, 4))
  64. It takes the same arguments as the :meth:`~@Task.apply_async` method::
  65. >>> add.apply_async(args, kwargs, **options)
  66. >>> add.subtask(args, kwargs, **options)
  67. >>> add.apply_async((2, 2), countdown=1)
  68. >>> add.subtask((2, 2), countdown=1)
  69. And like there is a :meth:`~@Task.delay` shortcut for `apply_async`
  70. there is an :meth:`~@Task.s` shortcut for subtask::
  71. >>> add.s(*args, **kwargs)
  72. >>> add.s(2, 2)
  73. proj.tasks.add(2, 2)
  74. >>> add.s(2, 2) == add.subtask((2, 2))
  75. True
  76. You can't define options with :meth:`~@Task.s`, but a chaining
  77. ``set`` call takes care of that::
  78. >>> add.s(2, 2).set(countdown=1)
  79. proj.tasks.add(2, 2)
  80. Partials
  81. --------
  82. A subtask can be applied too::
  83. >>> add.s(2, 2).delay()
  84. >>> add.s(2, 2).apply_async(countdown=1)
  85. Specifying additional args, kwargs or options to ``apply_async``/``delay``
  86. creates partials:
  87. - Any arguments added will be prepended to the args in the signature::
  88. >>> partial = add.s(2) # incomplete signature
  89. >>> partial.delay(4) # 2 + 4
  90. >>> partial.apply_async((4, )) # same
  91. - Any keyword arguments added will be merged with the kwargs in the signature,
  92. with the new keyword arguments taking precedence::
  93. >>> s = add.s(2, 2)
  94. >>> s.delay(debug=True) # -> add(2, 2, debug=True)
  95. >>> s.apply_async(kwargs={"debug": True}) # same
  96. - Any options added will be merged with the options in the signature,
  97. with the new options taking precedence::
  98. >>> s = add.subtask((2, 2), countdown=10)
  99. >>> s.apply_async(countdown=1) # countdown is now 1
  100. You can also clone subtasks to augment these::
  101. >>> s = add.s(2)
  102. proj.tasks.add(2)
  103. >>> s.clone(args=(4, ), kwargs={"debug": True})
  104. proj.tasks.add(2, 4, debug=True)
  105. Partials are meant to be used with callbacks, any tasks linked or chord
  106. callbacks will be applied with the result of the parent task.
  107. Sometimes you want to specify a callback that does not take
  108. additional arguments, and in that case you can set the subtask
  109. to be immutable::
  110. >>> add.apply_async((2, 2), link=reset_buffers.subtask(immutable=True))
  111. The ``.si()`` shortcut can also be used to create immutable subtasks::
  112. >>> add.apply_async((2, 2), link=reset_buffers.si())
  113. Only the execution options can be set when a subtask is immutable,
  114. and it's not possible to apply the subtask with partial args/kwargs.
  115. .. note::
  116. In this tutorial we use the prefix operator `~` to subtasks.
  117. You probably shouldn't use it in your production code, but it's a handy shortcut
  118. when testing with the Python shell::
  119. >>> ~subtask
  120. >>> # is the same as
  121. >>> subtask.delay().get()
  122. Groups
  123. ------
  124. A group can be used to execute several tasks in parallel.
  125. The :class:`~celery.group` function takes a list of subtasks::
  126. >>> from celery import group
  127. >>> from proj.tasks import add
  128. >>> group(add.s(2, 2), add.s(4, 4))
  129. (proj.tasks.add(2, 2), proj.tasks.add(4, 4))
  130. If you **call** the group, the tasks will be applied
  131. one after one in the current process, and a :class:`~@TaskSetResult`
  132. instance is returned which can be used to keep track of the results,
  133. or tell how many tasks are ready and so on::
  134. >>> g = group(add.s(2, 2), add.s(4, 4))
  135. >>> res = g()
  136. >>> res.get()
  137. [4, 8]
  138. However, if you call ``apply_async`` on the group it will
  139. send a special grouping task, so that the action of applying
  140. the tasks happens in a worker instead of the current process::
  141. >>> res = g.apply_async()
  142. >>> res.get()
  143. [4, 8]
  144. Group also supports iterators::
  145. >>> group(add.s(i, i) for i in xrange(100))()
  146. A group is a subclass instance, so it can be used in combination
  147. with other subtasks.
  148. Map & Starmap
  149. -------------
  150. :class:`~celery.map` and :class:`~celery.starmap` are built-in tasks
  151. that calls the task for every element in a sequence.
  152. They differ from group in that
  153. - only one task message is sent
  154. - the operation is sequential.
  155. For example using ``map``:
  156. .. code-block:: python
  157. >>> from proj.tasks import add
  158. >>> ~xsum.map([range(10), range(100)])
  159. [45, 4950]
  160. is the same as having a task doing:
  161. .. code-block:: python
  162. @celery.task
  163. def temp():
  164. return [xsum(range(10)), xsum(range(100))]
  165. and using ``starmap``::
  166. >>> ~add.starmap(zip(range(10), range(10)))
  167. [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
  168. is the same as having a task doing:
  169. .. code-block:: python
  170. @celery.task
  171. def temp():
  172. return [add(i, i) for i in range(10)]
  173. Both ``map`` and ``starmap`` are subtasks, so they can be used as
  174. other subtasks and combined in groups etc., for example
  175. to apply the starmap after 10 seconds::
  176. >>> add.starmap(zip(range(10), range(10))).apply_async(countdown=10)
  177. Chunking
  178. --------
  179. -- Chunking lets you divide a iterable of work into pieces,
  180. so that if you have one million objects, you can create
  181. 10 tasks with hundred thousand objects each.
  182. Some may worry that chunking your tasks results in a degradation
  183. of parallelism, but this is rarely true for a busy cluster
  184. and in practice since you are avoiding the overhead of messaging
  185. it may considerably increase performance.
  186. To create a chunks subtask you can use :meth:`@Task.chunks`:
  187. .. code-block:: python
  188. >>> add.chunks(zip(range(100), range(100)), 10)
  189. As with :class:`~celery.group` the act of **calling**
  190. the chunks will apply the tasks in the current process:
  191. .. code-block:: python
  192. >>> from proj.tasks import add
  193. >>> res = add.chunks(zip(range(100), range(100)), 10)()
  194. >>> res.get()
  195. [[0, 2, 4, 6, 8, 10, 12, 14, 16, 18],
  196. [20, 22, 24, 26, 28, 30, 32, 34, 36, 38],
  197. [40, 42, 44, 46, 48, 50, 52, 54, 56, 58],
  198. [60, 62, 64, 66, 68, 70, 72, 74, 76, 78],
  199. [80, 82, 84, 86, 88, 90, 92, 94, 96, 98],
  200. [100, 102, 104, 106, 108, 110, 112, 114, 116, 118],
  201. [120, 122, 124, 126, 128, 130, 132, 134, 136, 138],
  202. [140, 142, 144, 146, 148, 150, 152, 154, 156, 158],
  203. [160, 162, 164, 166, 168, 170, 172, 174, 176, 178],
  204. [180, 182, 184, 186, 188, 190, 192, 194, 196, 198]]
  205. while calling ``.apply_async`` will create a dedicated
  206. task so that the individual tasks are applied in a worker
  207. instead::
  208. >>> add.chunks(zip(range(100), range(100), 10)).apply_async()
  209. You can also convert chunks to a group::
  210. >>> group = add.chunks(zip(range(100), range(100), 10)).group()
  211. and with the group skew the countdown of each task by increments
  212. of one::
  213. >>> group.skew(start=1, stop=10)()
  214. which means that the first task will have a countdown of 1, the second
  215. a countdown of 2 and so on.
  216. Chaining tasks
  217. --------------
  218. Tasks can be linked together, which in practice means adding
  219. a callback task::
  220. >>> res = add.apply_async((2, 2), link=mul.s(16))
  221. >>> res.get()
  222. 4
  223. The linked task will be applied with the result of its parent
  224. task as the first argument, which in the above case will result
  225. in ``mul(4, 16)`` since the result is 4.
  226. The results will keep track of what subtasks a task applies,
  227. and this can be accessed from the result instance::
  228. >>> res.children
  229. [<AsyncResult: 8c350acf-519d-4553-8a53-4ad3a5c5aeb4>]
  230. >>> res.children[0].get()
  231. 64
  232. The result instance also has a :meth:`~@AsyncResult.collect` method
  233. that treats the result as a graph, enabling you to iterate over
  234. the results::
  235. >>> list(res.collect())
  236. [(<AsyncResult: 7b720856-dc5f-4415-9134-5c89def5664e>, 4),
  237. (<AsyncResult: 8c350acf-519d-4553-8a53-4ad3a5c5aeb4>, 64)]
  238. By default :meth:`~@AsyncResult.collect` will raise an
  239. :exc:`~@IncompleteStream` exception if the graph is not fully
  240. formed (one of the tasks has not completed yet),
  241. but you can get an intermediate representation of the graph
  242. too::
  243. >>> for result, value in res.collect(intermediate=True)):
  244. ....
  245. You can link together as many tasks as you like,
  246. and subtasks can be linked too::
  247. >>> s = add.s(2, 2)
  248. >>> s.link(mul.s(4))
  249. >>> s.link(log_result.s())
  250. You can also add *error callbacks* using the ``link_error`` argument::
  251. >>> add.apply_async((2, 2), link_error=log_error.s())
  252. >>> add.subtask((2, 2), link_error=log_error.s())
  253. Since exceptions can only be serialized when pickle is used
  254. the error callbacks take the id of the parent task as argument instead:
  255. .. code-block:: python
  256. from proj.celery import celery
  257. @celery.task
  258. def log_error(task_id):
  259. result = celery.AsyncResult(task_id)
  260. result.get(propagate=False) # make sure result written.
  261. with open("/var/errors/%s" % (task_id, )) as fh:
  262. fh.write("--\n\n%s %s %s" % (
  263. task_id, result.result, result.traceback))
  264. To make it even easier to link tasks together there is
  265. a special subtask called :class:`~celery.chain` that lets
  266. you chain tasks together:
  267. .. code-block:: python
  268. >>> from celery import chain
  269. >>> from proj.tasks import add, mul
  270. # (4 + 4) * 8 * 10
  271. >>> res = chain(add.s(4, 4), mul.s(8), mul.s(10))
  272. proj.tasks.add(4, 4) | proj.tasks.mul(8)
  273. Calling the chain will apply the tasks in the current process
  274. and return the result of the last task in the chain::
  275. >>> res = chain(add.s(4, 4), mul.s(8), mul.s(10))
  276. >>> res.get()
  277. 640
  278. And calling ``apply_async`` will create a dedicated
  279. task so that the act of applying the chain happens
  280. in a worker::
  281. >>> res = chain(add.s(4, 4), mul.s(8), mul.s(10))
  282. >>> res.get()
  283. 640
  284. It also sets ``parent`` attributes so that you can
  285. work your way up the chain to get intermediate results::
  286. >>> res.parent.get()
  287. 64
  288. >>> res.parent.parent.get()
  289. 8
  290. >>> res.parent.parent
  291. <AsyncResult: eeaad925-6778-4ad1-88c8-b2a63d017933>
  292. Chains can also be made using the ``|`` (pipe) operator::
  293. >>> (add.s(2, 2) | mul.s(8) | mul.s(10)).apply_async()
  294. Graphs
  295. ~~~~~~
  296. In addition you can work with the result graph as a
  297. :class:`~celery.datastructures.DependencyGraph`:
  298. .. code-block:: python
  299. >>> res = chain(add.s(4, 4), mul.s(8), mul.s(10))()
  300. >>> res.parent.parent.graph
  301. 285fa253-fcf8-42ef-8b95-0078897e83e6(1)
  302. 463afec2-5ed4-4036-b22d-ba067ec64f52(0)
  303. 872c3995-6fa0-46ca-98c2-5a19155afcf0(2)
  304. 285fa253-fcf8-42ef-8b95-0078897e83e6(1)
  305. 463afec2-5ed4-4036-b22d-ba067ec64f52(0)
  306. You can even convert these graphs to *dot* format::
  307. >>> with open("graph.dot", "w") as fh:
  308. ... res.parent.parent.graph.to_dot(fh)
  309. and create images::
  310. $ dot -Tpng graph.dot -o graph.png
  311. .. image:: ../images/graph.png
  312. Chords
  313. ------