next-steps.rst 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476
  1. .. _next-steps:
  2. ============
  3. Next Steps
  4. ============
  5. The :ref:`first-steps` guide is intentionally minimal. In this guide
  6. we will demonstrate what Celery offers in more detail, including
  7. how to add Celery support for your application and library.
  8. .. contents::
  9. :local:
  10. .. _project-layout:
  11. Our Project
  12. ===========
  13. Project layout::
  14. proj/__init__.py
  15. /celery.py
  16. /tasks.py
  17. :file:`proj/celery.py`
  18. ----------------------
  19. .. literalinclude:: ../../examples/next-steps/proj/celery.py
  20. :language: python
  21. In this module we created our :class:`@Celery` instance (sometimes
  22. referred to as the *app*). To use Celery within your project
  23. you simply import this instance.
  24. - The ``broker`` argument specifies the URL of the broker to use.
  25. See :ref:`celerytut-broker` for more information.
  26. - The ``backend`` argument specifies the result backend to use,
  27. It's used to keep track of task state and results.
  28. While results are disabled by default we use the amqp backend here
  29. to demonstrate how retrieving the results work, you may want to use
  30. a different backend for your application, as they all have different
  31. strenghts and weaknesses. If you don't need results it's best
  32. to disable them. Results can also be disabled for individual tasks
  33. by setting the ``@task(ignore_result=True)`` option.
  34. See :ref:`celerytut-keeping-results` for more information.
  35. - The ``include`` argument is a list of modules to import when
  36. the worker starts. We need to add our tasks module here so
  37. that the worker is able to find our tasks.
  38. :file:`proj/tasks.py`
  39. ---------------------
  40. .. literalinclude:: ../../examples/next-steps/proj/tasks.py
  41. :language: python
  42. Starting the worker
  43. ===================
  44. The :program:`celery` program can be used to start the worker::
  45. $ celery worker --app=proj -l info
  46. The :option:`--app` argument specifies the Celery app instance to use,
  47. it must be in the form of ``module.path:celery``, where the part before the colon
  48. is the name of the module, and the attribute name comes last.
  49. If a package name is specified instead it will automatically
  50. try to find a ``celery`` module in that package, and if the name
  51. is a module it will try to find a ``celery`` attribute in that module.
  52. This means that the following all results in the same::
  53. $ celery --app=proj
  54. $ celery --app=proj.celery:
  55. $ celery --app=proj.celery:celery
  56. Subtasks
  57. ========
  58. A :func:`~celery.subtask` wraps the signature of a single task invocation:
  59. arguments, keyword arguments and execution options.
  60. A subtask for the ``add`` task can be created like this::
  61. >>> from celery import subtask
  62. >>> subtask(add.name, args=(4, 4))
  63. or you can create one from the task itself::
  64. >>> from proj.tasks import add
  65. >>> add.subtask(args=(4, 4))
  66. It takes the same arguments as the :meth:`~@Task.apply_async` method::
  67. >>> add.apply_async(args, kwargs, **options)
  68. >>> add.subtask(args, kwargs, **options)
  69. >>> add.apply_async((2, 2), countdown=1)
  70. >>> add.subtask((2, 2), countdown=1)
  71. And like there is a :meth:`~@Task.delay` shortcut for `apply_async`
  72. there is an :meth:`~@Task.s` shortcut for subtask::
  73. >>> add.s(*args, **kwargs)
  74. >>> add.s(2, 2)
  75. proj.tasks.add(2, 2)
  76. >>> add.s(2, 2) == add.subtask((2, 2))
  77. True
  78. You can't define options with :meth:`~@Task.s`, but a chaining
  79. ``set`` call takes care of that::
  80. >>> add.s(2, 2).set(countdown=1)
  81. proj.tasks.add(2, 2)
  82. Partials
  83. --------
  84. A subtask can be applied too::
  85. >>> add.s(2, 2).delay()
  86. >>> add.s(2, 2).apply_async(countdown=1)
  87. Specifying additional args, kwargs or options to ``apply_async``/``delay``
  88. creates partials:
  89. - Any arguments added will be prepended to the args in the signature::
  90. >>> partial = add.s(2) # incomplete signature
  91. >>> partial.delay(4) # 2 + 4
  92. >>> partial.apply_async((4, )) # same
  93. - Any keyword arguments added will be merged with the kwargs in the signature,
  94. with the new keyword arguments taking precedence::
  95. >>> s = add.s(2, 2)
  96. >>> s.delay(debug=True) # -> add(2, 2, debug=True)
  97. >>> s.apply_async(kwargs={"debug": True}) # same
  98. - Any options added will be merged with the options in the signature,
  99. with the new options taking precedence::
  100. >>> s = add.subtask((2, 2), countdown=10)
  101. >>> s.apply_async(countdown=1) # countdown is now 1
  102. You can also clone subtasks to augment these::
  103. >>> s = add.s(2)
  104. proj.tasks.add(2)
  105. >>> s.clone(args=(4, ), kwargs={"debug": True})
  106. proj.tasks.add(2, 4, debug=True)
  107. Partials are meant to be used with callbacks, any tasks linked or chord
  108. callbacks will be applied with the result of the parent task.
  109. Sometimes you want to specify a callback that does not take
  110. additional arguments, and in that case you can set the subtask
  111. to be immutable::
  112. >>> add.apply_async((2, 2), link=reset_buffers.subtask(immutable=True))
  113. The ``.si()`` shortcut can also be used to create immutable subtasks::
  114. >>> add.apply_async((2, 2), link=reset_buffers.si())
  115. Only the execution options can be set when a subtask is immutable,
  116. and it's not possible to apply the subtask with partial args/kwargs.
  117. .. note::
  118. In this tutorial we use the prefix operator `~` to subtasks.
  119. You probably shouldn't use it in your production code, but it's a handy shortcut
  120. when testing with the Python shell::
  121. >>> ~subtask
  122. >>> # is the same as
  123. >>> subtask.delay().get()
  124. Groups
  125. ------
  126. A group can be used to execute several tasks in parallel.
  127. The :class:`~celery.group` function takes a list of subtasks::
  128. >>> from celery import group
  129. >>> from proj.tasks import add
  130. >>> group(add.s(2, 2), add.s(4, 4))
  131. (proj.tasks.add(2, 2), proj.tasks.add(4, 4))
  132. If you **call** the group, the tasks will be applied
  133. one after one in the current process, and a :class:`~@TaskSetResult`
  134. instance is returned which can be used to keep track of the results,
  135. or tell how many tasks are ready and so on::
  136. >>> g = group(add.s(2, 2), add.s(4, 4))
  137. >>> res = g()
  138. >>> res.get()
  139. [4, 8]
  140. However, if you call ``apply_async`` on the group it will
  141. send a special grouping task, so that the action of applying
  142. the tasks happens in a worker instead of the current process::
  143. >>> res = g.apply_async()
  144. >>> res.get()
  145. [4, 8]
  146. Group also supports iterators::
  147. >>> group(add.s(i, i) for i in xrange(100))()
  148. A group is a subclass instance, so it can be used in combination
  149. with other subtasks.
  150. Map & Starmap
  151. -------------
  152. :class:`~celery.map` and :class:`~celery.starmap` are built-in tasks
  153. that calls the task for every element in a sequence.
  154. They differ from group in that
  155. - only one task message is sent
  156. - the operation is sequential.
  157. For example using ``map``:
  158. .. code-block:: python
  159. >>> from proj.tasks import add
  160. >>> ~xsum.map([range(10), range(100)])
  161. [45, 4950]
  162. is the same as having a task doing:
  163. .. code-block:: python
  164. @celery.task()
  165. def temp():
  166. return [xsum(range(10)), xsum(range(100))]
  167. and using ``starmap``::
  168. >>> ~add.starmap(zip(range(10), range(10)))
  169. [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
  170. is the same as having a task doing:
  171. .. code-block:: python
  172. @celery.task()
  173. def temp():
  174. return [add(i, i) for i in range(10)]
  175. Both ``map`` and ``starmap`` are subtasks, so they can be used as
  176. other subtasks and combined in groups etc., for example
  177. to apply the starmap after 10 seconds::
  178. >>> add.starmap(zip(range(10), range(10))).apply_async(countdown=10)
  179. Chunking
  180. --------
  181. -- Chunking lets you divide a iterable of work into pieces,
  182. so that if you have one million objects, you can create
  183. 10 tasks with hundred thousand objects each.
  184. Some may worry that chunking your tasks results in a degradation
  185. of parallelism, but this is rarely true for a busy cluster
  186. and in practice since you are avoiding the overhead of messaging
  187. it may considerably increase performance.
  188. To create a chunks subtask you can use :meth:`@Task.chunks`:
  189. .. code-block:: python
  190. >>> add.chunks(zip(range(100), range(100)), 10)
  191. As with :class:`~celery.group` the act of **calling**
  192. the chunks will apply the tasks in the current process:
  193. .. code-block:: python
  194. >>> from proj.tasks import add
  195. >>> res = add.chunks(zip(range(100), range(100)), 10)()
  196. >>> res.get()
  197. [[0, 2, 4, 6, 8, 10, 12, 14, 16, 18],
  198. [20, 22, 24, 26, 28, 30, 32, 34, 36, 38],
  199. [40, 42, 44, 46, 48, 50, 52, 54, 56, 58],
  200. [60, 62, 64, 66, 68, 70, 72, 74, 76, 78],
  201. [80, 82, 84, 86, 88, 90, 92, 94, 96, 98],
  202. [100, 102, 104, 106, 108, 110, 112, 114, 116, 118],
  203. [120, 122, 124, 126, 128, 130, 132, 134, 136, 138],
  204. [140, 142, 144, 146, 148, 150, 152, 154, 156, 158],
  205. [160, 162, 164, 166, 168, 170, 172, 174, 176, 178],
  206. [180, 182, 184, 186, 188, 190, 192, 194, 196, 198]]
  207. while calling ``.apply_async`` will create a dedicated
  208. task so that the individual tasks are applied in a worker
  209. instead::
  210. >>> add.chunks(zip(range(100), range(100), 10)).apply_async()
  211. You can also convert chunks to a group::
  212. >>> group = add.chunks(zip(range(100), range(100), 10)).group()
  213. and with the group skew the countdown of each task by increments
  214. of one::
  215. >>> group.skew(start=1, stop=10)()
  216. which means that the first task will have a countdown of 1, the second
  217. a countdown of 2 and so on.
  218. Chaining tasks
  219. --------------
  220. Tasks can be linked together, which in practice means adding
  221. a callback task::
  222. >>> res = add.apply_async((2, 2), link=mul.s(16))
  223. >>> res.get()
  224. 4
  225. The linked task will be applied with the result of its parent
  226. task as the first argument, which in the above case will result
  227. in ``mul(4, 16)`` since the result is 4.
  228. The results will keep track of what subtasks a task applies,
  229. and this can be accessed from the result instance::
  230. >>> res.children
  231. [<AsyncResult: 8c350acf-519d-4553-8a53-4ad3a5c5aeb4>]
  232. >>> res.children[0].get()
  233. 64
  234. The result instance also has a :meth:`~@AsyncResult.collect` method
  235. that treats the result as a graph, enabling you to iterate over
  236. the results::
  237. >>> list(res.collect())
  238. [(<AsyncResult: 7b720856-dc5f-4415-9134-5c89def5664e>, 4),
  239. (<AsyncResult: 8c350acf-519d-4553-8a53-4ad3a5c5aeb4>, 64)]
  240. By default :meth:`~@AsyncResult.collect` will raise an
  241. :exc:`~@IncompleteStream` exception if the graph is not fully
  242. formed (one of the tasks has not completed yet),
  243. but you can get an intermediate representation of the graph
  244. too::
  245. >>> for result, value in res.collect(intermediate=True)):
  246. ....
  247. You can link together as many tasks as you like,
  248. and subtasks can be linked too::
  249. >>> s = add.s(2, 2)
  250. >>> s.link(mul.s(4))
  251. >>> s.link(log_result.s())
  252. You can also add *error callbacks* using the ``link_error`` argument::
  253. >>> add.apply_async((2, 2), link_error=log_error.s())
  254. >>> add.subtask((2, 2), link_error=log_error.s())
  255. Since exceptions can only be serialized when pickle is used
  256. the error callbacks take the id of the parent task as argument instead:
  257. .. code-block:: python
  258. from proj.celery import celery
  259. @celery.task()
  260. def log_error(task_id):
  261. result = celery.AsyncResult(task_id)
  262. result.get(propagate=False) # make sure result written.
  263. with open("/var/errors/%s" % (task_id, )) as fh:
  264. fh.write("--\n\n%s %s %s" % (
  265. task_id, result.result, result.traceback))
  266. To make it even easier to link tasks together there is
  267. a special subtask called :class:`~celery.chain` that lets
  268. you chain tasks together:
  269. .. code-block:: python
  270. >>> from celery import chain
  271. >>> from proj.tasks import add, mul
  272. # (4 + 4) * 8 * 10
  273. >>> res = chain(add.s(4, 4), mul.s(8), mul.s(10))
  274. proj.tasks.add(4, 4) | proj.tasks.mul(8)
  275. Calling the chain will apply the tasks in the current process
  276. and return the result of the last task in the chain::
  277. >>> res = chain(add.s(4, 4), mul.s(8), mul.s(10))
  278. >>> res.get()
  279. 640
  280. And calling ``apply_async`` will create a dedicated
  281. task so that the act of applying the chain happens
  282. in a worker::
  283. >>> res = chain(add.s(4, 4), mul.s(8), mul.s(10))
  284. >>> res.get()
  285. 640
  286. It also sets ``parent`` attributes so that you can
  287. work your way up the chain to get intermediate results::
  288. >>> res.parent.get()
  289. 64
  290. >>> res.parent.parent.get()
  291. 8
  292. >>> res.parent.parent
  293. <AsyncResult: eeaad925-6778-4ad1-88c8-b2a63d017933>
  294. Chains can also be made using the ``|`` (pipe) operator::
  295. >>> (add.s(2, 2) | mul.s(8) | mul.s(10)).apply_async()
  296. Graphs
  297. ~~~~~~
  298. In addition you can work with the result graph as a
  299. :class:`~celery.datastructures.DependencyGraph`:
  300. .. code-block:: python
  301. >>> res = chain(add.s(4, 4), mul.s(8), mul.s(10))()
  302. >>> res.parent.parent.graph
  303. 285fa253-fcf8-42ef-8b95-0078897e83e6(1)
  304. 463afec2-5ed4-4036-b22d-ba067ec64f52(0)
  305. 872c3995-6fa0-46ca-98c2-5a19155afcf0(2)
  306. 285fa253-fcf8-42ef-8b95-0078897e83e6(1)
  307. 463afec2-5ed4-4036-b22d-ba067ec64f52(0)
  308. You can even convert these graphs to *dot* format::
  309. >>> with open("graph.dot", "w") as fh:
  310. ... res.parent.parent.graph.to_dot(fh)
  311. and create images::
  312. $ dot -Tpng graph.dot -o graph.png
  313. .. image:: ../images/graph.png
  314. Chords
  315. ------