monitoring.rst 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801
  1. .. _guide-monitoring:
  2. =================================
  3. Monitoring and Management Guide
  4. =================================
  5. .. contents::
  6. :local:
  7. Introduction
  8. ============
  9. There are several tools available to monitor and inspect Celery clusters.
  10. This document describes some of these, as as well as
  11. features related to monitoring, like events and broadcast commands.
  12. .. _monitoring-workers:
  13. Workers
  14. =======
  15. .. _monitoring-control:
  16. Management Command-line Utilities (``inspect``/``control``)
  17. -----------------------------------------------------------
  18. :program:`celery` can also be used to inspect
  19. and manage worker nodes (and to some degree tasks).
  20. To list all the commands available do:
  21. .. code-block:: console
  22. $ celery help
  23. or to get help for a specific command do:
  24. .. code-block:: console
  25. $ celery <command> --help
  26. Commands
  27. ~~~~~~~~
  28. * **shell**: Drop into a Python shell.
  29. The locals will include the ``celery`` variable, which is the current app.
  30. Also all known tasks will be automatically added to locals (unless the
  31. :option:`--without-tasks <celery shell --without-tasks>` flag is set).
  32. Uses :pypi:`Ipython`, :pypi:`bpython`, or regular python in that order if
  33. installed. You can force an implementation using
  34. :option:`--ipython <celery shell --ipython>`,
  35. :option:`--bpython <celery shell --bpython>`, or
  36. :option:`--python <celery shell --python>`.
  37. * **status**: List active nodes in this cluster
  38. .. code-block:: console
  39. $ celery -A proj status
  40. * **result**: Show the result of a task
  41. .. code-block:: console
  42. $ celery -A proj result -t tasks.add 4e196aa4-0141-4601-8138-7aa33db0f577
  43. Note that you can omit the name of the task as long as the
  44. task doesn't use a custom result backend.
  45. * **purge**: Purge messages from all configured task queues.
  46. This command will remove all messages from queues configured in
  47. the :setting:`CELERY_QUEUES` setting:
  48. .. warning::
  49. There is no undo for this operation, and messages will
  50. be permanently deleted!
  51. .. code-block:: console
  52. $ celery -A proj purge
  53. You can also specify the queues to purge using the `-Q` option:
  54. .. code-block:: console
  55. $ celery -A proj purge -Q celery,foo,bar
  56. and exclude queues from being purged using the `-X` option:
  57. .. code-block:: console
  58. $ celery -A proj purge -X celery
  59. * **inspect active**: List active tasks
  60. .. code-block:: console
  61. $ celery -A proj inspect active
  62. These are all the tasks that are currently being executed.
  63. * **inspect scheduled**: List scheduled ETA tasks
  64. .. code-block:: console
  65. $ celery -A proj inspect scheduled
  66. These are tasks reserved by the worker because they have the
  67. `eta` or `countdown` argument set.
  68. * **inspect reserved**: List reserved tasks
  69. .. code-block:: console
  70. $ celery -A proj inspect reserved
  71. This will list all tasks that have been prefetched by the worker,
  72. and is currently waiting to be executed (does not include tasks
  73. with an eta).
  74. * **inspect revoked**: List history of revoked tasks
  75. .. code-block:: console
  76. $ celery -A proj inspect revoked
  77. * **inspect registered**: List registered tasks
  78. .. code-block:: console
  79. $ celery -A proj inspect registered
  80. * **inspect stats**: Show worker statistics (see :ref:`worker-statistics`)
  81. .. code-block:: console
  82. $ celery -A proj inspect stats
  83. * **control enable_events**: Enable events
  84. .. code-block:: console
  85. $ celery -A proj control enable_events
  86. * **control disable_events**: Disable events
  87. .. code-block:: console
  88. $ celery -A proj control disable_events
  89. * **migrate**: Migrate tasks from one broker to another (**EXPERIMENTAL**).
  90. .. code-block:: console
  91. $ celery -A proj migrate redis://localhost amqp://localhost
  92. This command will migrate all the tasks on one broker to another.
  93. As this command is new and experimental you should be sure to have
  94. a backup of the data before proceeding.
  95. .. note::
  96. All ``inspect`` and ``control`` commands supports a
  97. :option:`--timeout <celery inspect --timeout>` argument,
  98. This is the number of seconds to wait for responses.
  99. You may have to increase this timeout if you're not getting a response
  100. due to latency.
  101. .. _inspect-destination:
  102. Specifying destination nodes
  103. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  104. By default the inspect and control commands operates on all workers.
  105. You can specify a single, or a list of workers by using the
  106. :option:`--destination <celery inspect --destination>` argument:
  107. .. code-block:: console
  108. $ celery -A proj inspect -d w1,w2 reserved
  109. $ celery -A proj control -d w1,w2 enable_events
  110. .. _monitoring-flower:
  111. Flower: Real-time Celery web-monitor
  112. ------------------------------------
  113. Flower is a real-time web based monitor and administration tool for Celery.
  114. It is under active development, but is already an essential tool.
  115. Being the recommended monitor for Celery, it obsoletes the Django-Admin
  116. monitor, ``celerymon`` and the ``ncurses`` based monitor.
  117. Flower is pronounced like "flow", but you can also use the botanical version
  118. if you prefer.
  119. Features
  120. ~~~~~~~~
  121. - Real-time monitoring using Celery Events
  122. - Task progress and history
  123. - Ability to show task details (arguments, start time, run-time, and more)
  124. - Graphs and statistics
  125. - Remote Control
  126. - View worker status and statistics
  127. - Shutdown and restart worker instances
  128. - Control worker pool size and autoscale settings
  129. - View and modify the queues a worker instance consumes from
  130. - View currently running tasks
  131. - View scheduled tasks (ETA/countdown)
  132. - View reserved and revoked tasks
  133. - Apply time and rate limits
  134. - Configuration viewer
  135. - Revoke or terminate tasks
  136. - HTTP API
  137. - List workers
  138. - Shut down a worker
  139. - Restart worker’s pool
  140. - Grow worker’s pool
  141. - Shrink worker’s pool
  142. - Autoscale worker pool
  143. - Start consuming from a queue
  144. - Stop consuming from a queue
  145. - List tasks
  146. - List (seen) task types
  147. - Get a task info
  148. - Execute a task
  149. - Execute a task by name
  150. - Get a task result
  151. - Change soft and hard time limits for a task
  152. - Change rate limit for a task
  153. - Revoke a task
  154. - OpenID authentication
  155. **Screenshots**
  156. .. figure:: ../images/dashboard.png
  157. :width: 700px
  158. .. figure:: ../images/monitor.png
  159. :width: 700px
  160. More screenshots_:
  161. .. _screenshots: https://github.com/mher/flower/tree/master/docs/screenshots
  162. Usage
  163. ~~~~~
  164. You can use pip to install Flower:
  165. .. code-block:: console
  166. $ pip install flower
  167. Running the flower command will start a web-server that you can visit:
  168. .. code-block:: console
  169. $ celery -A proj flower
  170. The default port is http://localhost:5555, but you can change this using the
  171. :option:`--port <flower --port>` argument:
  172. .. code-block:: console
  173. $ celery -A proj flower --port=5555
  174. Broker URL can also be passed through the
  175. :option:`--broker <celery --broker>` argument :
  176. .. code-block:: console
  177. $ celery flower --broker=amqp://guest:guest@localhost:5672//
  178. or
  179. $ celery flower --broker=redis://guest:guest@localhost:6379/0
  180. Then, you can visit flower in your web browser :
  181. .. code-block:: console
  182. $ open http://localhost:5555
  183. Flower has many more features than are detailed here, including
  184. authorization options. Check out the `official documentation`_ for more
  185. information.
  186. .. _official documentation: https://flower.readthedocs.io/en/latest/
  187. .. _monitoring-celeryev:
  188. celery events: Curses Monitor
  189. -----------------------------
  190. .. versionadded:: 2.0
  191. `celery events` is a simple curses monitor displaying
  192. task and worker history. You can inspect the result and traceback of tasks,
  193. and it also supports some management commands like rate limiting and shutting
  194. down workers. This monitor was started as a proof of concept, and you
  195. probably want to use Flower instead.
  196. Starting:
  197. .. code-block:: console
  198. $ celery -A proj events
  199. You should see a screen like:
  200. .. figure:: ../images/celeryevshotsm.jpg
  201. `celery events` is also used to start snapshot cameras (see
  202. :ref:`monitoring-snapshots`:
  203. .. code-block:: console
  204. $ celery -A proj events --camera=<camera-class> --frequency=1.0
  205. and it includes a tool to dump events to :file:`stdout`:
  206. .. code-block:: console
  207. $ celery -A proj events --dump
  208. For a complete list of options use :option:`--help <celery --help>`:
  209. .. code-block:: console
  210. $ celery events --help
  211. .. _`celerymon`: https://github.com/celery/celerymon/
  212. .. _monitoring-rabbitmq:
  213. RabbitMQ
  214. ========
  215. To manage a Celery cluster it is important to know how
  216. RabbitMQ can be monitored.
  217. RabbitMQ ships with the `rabbitmqctl(1)`_ command,
  218. with this you can list queues, exchanges, bindings,
  219. queue lengths, the memory usage of each queue, as well
  220. as manage users, virtual hosts and their permissions.
  221. .. note::
  222. The default virtual host (``"/"``) is used in these
  223. examples, if you use a custom virtual host you have to add
  224. the ``-p`` argument to the command, e.g:
  225. ``rabbitmqctl list_queues -p my_vhost …``
  226. .. _`rabbitmqctl(1)`: http://www.rabbitmq.com/man/rabbitmqctl.1.man.html
  227. .. _monitoring-rmq-queues:
  228. Inspecting queues
  229. -----------------
  230. Finding the number of tasks in a queue:
  231. .. code-block:: console
  232. $ rabbitmqctl list_queues name messages messages_ready \
  233. messages_unacknowledged
  234. Here `messages_ready` is the number of messages ready
  235. for delivery (sent but not received), `messages_unacknowledged`
  236. is the number of messages that has been received by a worker but
  237. not acknowledged yet (meaning it is in progress, or has been reserved).
  238. `messages` is the sum of ready and unacknowledged messages.
  239. Finding the number of workers currently consuming from a queue:
  240. .. code-block:: console
  241. $ rabbitmqctl list_queues name consumers
  242. Finding the amount of memory allocated to a queue:
  243. .. code-block:: console
  244. $ rabbitmqctl list_queues name memory
  245. :Tip: Adding the ``-q`` option to `rabbitmqctl(1)`_ makes the output
  246. easier to parse.
  247. .. _monitoring-redis:
  248. Redis
  249. =====
  250. If you're using Redis as the broker, you can monitor the Celery cluster using
  251. the `redis-cli(1)` command to list lengths of queues.
  252. .. _monitoring-redis-queues:
  253. Inspecting queues
  254. -----------------
  255. Finding the number of tasks in a queue:
  256. .. code-block:: console
  257. $ redis-cli -h HOST -p PORT -n DATABASE_NUMBER llen QUEUE_NAME
  258. The default queue is named `celery`. To get all available queues, invoke:
  259. .. code-block:: console
  260. $ redis-cli -h HOST -p PORT -n DATABASE_NUMBER keys \*
  261. .. note::
  262. Queue keys only exists when there are tasks in them, so if a key
  263. does not exist it simply means there are no messages in that queue.
  264. This is because in Redis a list with no elements in it is automatically
  265. removed, and hence it won't show up in the `keys` command output,
  266. and `llen` for that list returns 0.
  267. Also, if you're using Redis for other purposes, the
  268. output of the `keys` command will include unrelated values stored in
  269. the database. The recommended way around this is to use a
  270. dedicated `DATABASE_NUMBER` for Celery, you can also use
  271. database numbers to separate Celery applications from each other (virtual
  272. hosts), but this will not affect the monitoring events used by e.g. Flower
  273. as Redis pub/sub commands are global rather than database based.
  274. .. _monitoring-munin:
  275. Munin
  276. =====
  277. This is a list of known Munin plug-ins that can be useful when
  278. maintaining a Celery cluster.
  279. * ``rabbitmq-munin``: Munin plug-ins for RabbitMQ.
  280. https://github.com/ask/rabbitmq-munin
  281. * ``celery_tasks``: Monitors the number of times each task type has
  282. been executed (requires `celerymon`).
  283. http://exchange.munin-monitoring.org/plugins/celery_tasks-2/details
  284. * ``celery_task_states``: Monitors the number of tasks in each state
  285. (requires `celerymon`).
  286. http://exchange.munin-monitoring.org/plugins/celery_tasks/details
  287. .. _monitoring-events:
  288. Events
  289. ======
  290. The worker has the ability to send a message whenever some event
  291. happens. These events are then captured by tools like Flower,
  292. and :program:`celery events` to monitor the cluster.
  293. .. _monitoring-snapshots:
  294. Snapshots
  295. ---------
  296. .. versionadded:: 2.1
  297. Even a single worker can produce a huge amount of events, so storing
  298. the history of all events on disk may be very expensive.
  299. A sequence of events describes the cluster state in that time period,
  300. by taking periodic snapshots of this state you can keep all history, but
  301. still only periodically write it to disk.
  302. To take snapshots you need a Camera class, with this you can define
  303. what should happen every time the state is captured; You can
  304. write it to a database, send it by email or something else entirely.
  305. :program:`celery events` is then used to take snapshots with the camera,
  306. for example if you want to capture state every 2 seconds using the
  307. camera ``myapp.Camera`` you run :program:`celery events` with the following
  308. arguments:
  309. .. code-block:: console
  310. $ celery -A proj events -c myapp.Camera --frequency=2.0
  311. .. _monitoring-camera:
  312. Custom Camera
  313. ~~~~~~~~~~~~~
  314. Cameras can be useful if you need to capture events and do something
  315. with those events at an interval. For real-time event processing
  316. you should use :class:`@events.Receiver` directly, like in
  317. :ref:`event-real-time-example`.
  318. Here is an example camera, dumping the snapshot to screen:
  319. .. code-block:: python
  320. from pprint import pformat
  321. from celery.events.snapshot import Polaroid
  322. class DumpCam(Polaroid):
  323. clear_after = True # clear after flush (incl, state.event_count).
  324. def on_shutter(self, state):
  325. if not state.event_count:
  326. # No new events since last snapshot.
  327. return
  328. print('Workers: {0}'.format(pformat(state.workers, indent=4)))
  329. print('Tasks: {0}'.format(pformat(state.tasks, indent=4)))
  330. print('Total: {0.event_count} events, {0.task_count} tasks'.format(
  331. state))
  332. See the API reference for :mod:`celery.events.state` to read more
  333. about state objects.
  334. Now you can use this cam with :program:`celery events` by specifying
  335. it with the :option:`-c <celery events -c>` option:
  336. .. code-block:: console
  337. $ celery -A proj events -c myapp.DumpCam --frequency=2.0
  338. Or you can use it programmatically like this:
  339. .. code-block:: python
  340. from celery import Celery
  341. from myapp import DumpCam
  342. def main(app, freq=1.0):
  343. state = app.events.State()
  344. with app.connection() as connection:
  345. recv = app.events.Receiver(connection, handlers={'*': state.event})
  346. with DumpCam(state, freq=freq):
  347. recv.capture(limit=None, timeout=None)
  348. if __name__ == '__main__':
  349. app = Celery(broker='amqp://guest@localhost//')
  350. main(app)
  351. .. _event-real-time-example:
  352. Real-time processing
  353. --------------------
  354. To process events in real-time you need the following
  355. - An event consumer (this is the ``Receiver``)
  356. - A set of handlers called when events come in.
  357. You can have different handlers for each event type,
  358. or a catch-all handler can be used ('*')
  359. - State (optional)
  360. :class:`@events.State` is a convenient in-memory representation
  361. of tasks and workers in the cluster that is updated as events come in.
  362. It encapsulates solutions for many common things, like checking if a
  363. worker is still alive (by verifying heartbeats), merging event fields
  364. together as events come in, making sure time-stamps are in sync, and so on.
  365. Combining these you can easily process events in real-time:
  366. .. code-block:: python
  367. from celery import Celery
  368. def my_monitor(app):
  369. state = app.events.State()
  370. def announce_failed_tasks(event):
  371. state.event(event)
  372. # task name is sent only with -received event, and state
  373. # will keep track of this for us.
  374. task = state.tasks.get(event['uuid'])
  375. print('TASK FAILED: %s[%s] %s' % (
  376. task.name, task.uuid, task.info(),))
  377. with app.connection() as connection:
  378. recv = app.events.Receiver(connection, handlers={
  379. 'task-failed': announce_failed_tasks,
  380. '*': state.event,
  381. })
  382. recv.capture(limit=None, timeout=None, wakeup=True)
  383. if __name__ == '__main__':
  384. app = Celery(broker='amqp://guest@localhost//')
  385. my_monitor(app)
  386. .. note::
  387. The ``wakeup`` argument to ``capture`` sends a signal to all workers
  388. to force them to send a heartbeat. This way you can immediately see
  389. workers when the monitor starts.
  390. You can listen to specific events by specifying the handlers:
  391. .. code-block:: python
  392. from celery import Celery
  393. def my_monitor(app):
  394. state = app.events.State()
  395. def announce_failed_tasks(event):
  396. state.event(event)
  397. # task name is sent only with -received event, and state
  398. # will keep track of this for us.
  399. task = state.tasks.get(event['uuid'])
  400. print('TASK FAILED: %s[%s] %s' % (
  401. task.name, task.uuid, task.info(),))
  402. with app.connection() as connection:
  403. recv = app.events.Receiver(connection, handlers={
  404. 'task-failed': announce_failed_tasks,
  405. })
  406. recv.capture(limit=None, timeout=None, wakeup=True)
  407. if __name__ == '__main__':
  408. app = Celery(broker='amqp://guest@localhost//')
  409. my_monitor(app)
  410. .. _event-reference:
  411. Event Reference
  412. ===============
  413. This list contains the events sent by the worker, and their arguments.
  414. .. _event-reference-task:
  415. Task Events
  416. -----------
  417. .. event:: task-sent
  418. task-sent
  419. ~~~~~~~~~
  420. :signature: ``task-sent(uuid, name, args, kwargs, retries, eta, expires,
  421. queue, exchange, routing_key, root_id, parent_id)``
  422. Sent when a task message is published and
  423. the :setting:`task_send_sent_event` setting is enabled.
  424. .. event:: task-received
  425. task-received
  426. ~~~~~~~~~~~~~
  427. :signature: ``task-received(uuid, name, args, kwargs, retries, eta, hostname,
  428. timestamp, root_id, parent_id)``
  429. Sent when the worker receives a task.
  430. .. event:: task-started
  431. task-started
  432. ~~~~~~~~~~~~
  433. :signature: ``task-started(uuid, hostname, timestamp, pid)``
  434. Sent just before the worker executes the task.
  435. .. event:: task-succeeded
  436. task-succeeded
  437. ~~~~~~~~~~~~~~
  438. :signature: ``task-succeeded(uuid, result, runtime, hostname, timestamp)``
  439. Sent if the task executed successfully.
  440. Run-time is the time it took to execute the task using the pool.
  441. (Starting from the task is sent to the worker pool, and ending when the
  442. pool result handler callback is called).
  443. .. event:: task-failed
  444. task-failed
  445. ~~~~~~~~~~~
  446. :signature: ``task-failed(uuid, exception, traceback, hostname, timestamp)``
  447. Sent if the execution of the task failed.
  448. .. event:: task-rejected
  449. task-rejected
  450. ~~~~~~~~~~~~~
  451. :signature: ``task-rejected(uuid, requeued)``
  452. The task was rejected by the worker, possibly to be re-queued or moved to a
  453. dead letter queue.
  454. .. event:: task-revoked
  455. task-revoked
  456. ~~~~~~~~~~~~
  457. :signature: ``task-revoked(uuid, terminated, signum, expired)``
  458. Sent if the task has been revoked (Note that this is likely
  459. to be sent by more than one worker).
  460. - ``terminated`` is set to true if the task process was terminated,
  461. and the ``signum`` field set to the signal used.
  462. - ``expired`` is set to true if the task expired.
  463. .. event:: task-retried
  464. task-retried
  465. ~~~~~~~~~~~~
  466. :signature: ``task-retried(uuid, exception, traceback, hostname, timestamp)``
  467. Sent if the task failed, but will be retried in the future.
  468. .. _event-reference-worker:
  469. Worker Events
  470. -------------
  471. .. event:: worker-online
  472. worker-online
  473. ~~~~~~~~~~~~~
  474. :signature: ``worker-online(hostname, timestamp, freq, sw_ident, sw_ver, sw_sys)``
  475. The worker has connected to the broker and is online.
  476. - `hostname`: Nodename of the worker.
  477. - `timestamp`: Event time-stamp.
  478. - `freq`: Heartbeat frequency in seconds (float).
  479. - `sw_ident`: Name of worker software (e.g. ``py-celery``).
  480. - `sw_ver`: Software version (e.g. 2.2.0).
  481. - `sw_sys`: Operating System (e.g. Linux, Windows, Darwin).
  482. .. event:: worker-heartbeat
  483. worker-heartbeat
  484. ~~~~~~~~~~~~~~~~
  485. :signature: ``worker-heartbeat(hostname, timestamp, freq, sw_ident, sw_ver, sw_sys,
  486. active, processed)``
  487. Sent every minute, if the worker has not sent a heartbeat in 2 minutes,
  488. it is considered to be offline.
  489. - `hostname`: Nodename of the worker.
  490. - `timestamp`: Event time-stamp.
  491. - `freq`: Heartbeat frequency in seconds (float).
  492. - `sw_ident`: Name of worker software (e.g. ``py-celery``).
  493. - `sw_ver`: Software version (e.g. 2.2.0).
  494. - `sw_sys`: Operating System (e.g. Linux, Windows, Darwin).
  495. - `active`: Number of currently executing tasks.
  496. - `processed`: Total number of tasks processed by this worker.
  497. .. event:: worker-offline
  498. worker-offline
  499. ~~~~~~~~~~~~~~
  500. :signature: ``worker-offline(hostname, timestamp, freq, sw_ident, sw_ver, sw_sys)``
  501. The worker has disconnected from the broker.