canvas.rst 28 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066
  1. .. _guide-canvas:
  2. ==============================
  3. Canvas: Designing Work-flows
  4. ==============================
  5. .. contents::
  6. :local:
  7. :depth: 2
  8. .. _canvas-subtasks:
  9. .. _canvas-signatures:
  10. Signatures
  11. ==========
  12. .. versionadded:: 2.0
  13. You just learned how to call a task using the tasks ``delay`` method
  14. in the :ref:`calling <guide-calling>` guide, and this is often all you need,
  15. but sometimes you may want to pass the signature of a task invocation to
  16. another process or as an argument to another function.
  17. A :func:`~celery.signature` wraps the arguments, keyword arguments, and execution options
  18. of a single task invocation in a way such that it can be passed to functions
  19. or even serialized and sent across the wire.
  20. - You can create a signature for the ``add`` task using its name like this:
  21. .. code-block:: pycon
  22. >>> from celery import signature
  23. >>> signature('tasks.add', args=(2, 2), countdown=10)
  24. tasks.add(2, 2)
  25. This task has a signature of arity 2 (two arguments): ``(2, 2)``,
  26. and sets the countdown execution option to 10.
  27. - or you can create one using the task's ``signature`` method:
  28. .. code-block:: pycon
  29. >>> add.signature((2, 2), countdown=10)
  30. tasks.add(2, 2)
  31. - There is also a shortcut using star arguments:
  32. .. code-block:: pycon
  33. >>> add.s(2, 2)
  34. tasks.add(2, 2)
  35. - Keyword arguments are also supported:
  36. .. code-block:: pycon
  37. >>> add.s(2, 2, debug=True)
  38. tasks.add(2, 2, debug=True)
  39. - From any signature instance you can inspect the different fields:
  40. .. code-block:: pycon
  41. >>> s = add.signature((2, 2), {'debug': True}, countdown=10)
  42. >>> s.args
  43. (2, 2)
  44. >>> s.kwargs
  45. {'debug': True}
  46. >>> s.options
  47. {'countdown': 10}
  48. - It supports the "Calling API" which means it supports ``delay`` and
  49. ``apply_async`` or being called directly.
  50. Calling the signature will execute the task inline in the current process:
  51. .. code-block:: pycon
  52. >>> add(2, 2)
  53. 4
  54. >>> add.s(2, 2)()
  55. 4
  56. ``delay`` is our beloved shortcut to ``apply_async`` taking star-arguments:
  57. .. code-block:: pycon
  58. >>> result = add.delay(2, 2)
  59. >>> result.get()
  60. 4
  61. ``apply_async`` takes the same arguments as the
  62. :meth:`Task.apply_async <@Task.apply_async>` method:
  63. .. code-block:: pycon
  64. >>> add.apply_async(args, kwargs, **options)
  65. >>> add.signature(args, kwargs, **options).apply_async()
  66. >>> add.apply_async((2, 2), countdown=1)
  67. >>> add.signature((2, 2), countdown=1).apply_async()
  68. - You can't define options with :meth:`~@Task.s`, but a chaining
  69. ``set`` call takes care of that:
  70. .. code-block:: pycon
  71. >>> add.s(2, 2).set(countdown=1)
  72. proj.tasks.add(2, 2)
  73. Partials
  74. --------
  75. With a signature, you can execute the task in a worker:
  76. .. code-block:: pycon
  77. >>> add.s(2, 2).delay()
  78. >>> add.s(2, 2).apply_async(countdown=1)
  79. Or you can call it directly in the current process:
  80. .. code-block:: pycon
  81. >>> add.s(2, 2)()
  82. 4
  83. Specifying additional args, kwargs or options to ``apply_async``/``delay``
  84. creates partials:
  85. - Any arguments added will be prepended to the args in the signature:
  86. .. code-block:: pycon
  87. >>> partial = add.s(2) # incomplete signature
  88. >>> partial.delay(4) # 4 + 2
  89. >>> partial.apply_async((4,)) # same
  90. - Any keyword arguments added will be merged with the kwargs in the signature,
  91. with the new keyword arguments taking precedence:
  92. .. code-block:: pycon
  93. >>> s = add.s(2, 2)
  94. >>> s.delay(debug=True) # -> add(2, 2, debug=True)
  95. >>> s.apply_async(kwargs={'debug': True}) # same
  96. - Any options added will be merged with the options in the signature,
  97. with the new options taking precedence:
  98. .. code-block:: pycon
  99. >>> s = add.signature((2, 2), countdown=10)
  100. >>> s.apply_async(countdown=1) # countdown is now 1
  101. You can also clone signatures to create derivatives:
  102. .. code-block:: pycon
  103. >>> s = add.s(2)
  104. proj.tasks.add(2)
  105. >>> s.clone(args=(4,), kwargs={'debug': True})
  106. proj.tasks.add(4, 2, debug=True)
  107. Immutability
  108. ------------
  109. .. versionadded:: 3.0
  110. Partials are meant to be used with callbacks, any tasks linked or chord
  111. callbacks will be applied with the result of the parent task.
  112. Sometimes you want to specify a callback that does not take
  113. additional arguments, and in that case you can set the signature
  114. to be immutable:
  115. .. code-block:: pycon
  116. >>> add.apply_async((2, 2), link=reset_buffers.signature(immutable=True))
  117. The ``.si()`` shortcut can also be used to create immutable signatures:
  118. .. code-block:: pycon
  119. >>> add.apply_async((2, 2), link=reset_buffers.si())
  120. Only the execution options can be set when a signature is immutable,
  121. so it's not possible to call the signature with partial args/kwargs.
  122. .. note::
  123. In this tutorial I sometimes use the prefix operator `~` to signatures.
  124. You probably shouldn't use it in your production code, but it's a handy shortcut
  125. when experimenting in the Python shell:
  126. .. code-block:: pycon
  127. >>> ~sig
  128. >>> # is the same as
  129. >>> sig.delay().get()
  130. .. _canvas-callbacks:
  131. Callbacks
  132. ---------
  133. .. versionadded:: 3.0
  134. Callbacks can be added to any task using the ``link`` argument
  135. to ``apply_async``:
  136. .. code-block:: pycon
  137. add.apply_async((2, 2), link=other_task.s())
  138. The callback will only be applied if the task exited successfully,
  139. and it will be applied with the return value of the parent task as argument.
  140. As I mentioned earlier, any arguments you add to a signature,
  141. will be prepended to the arguments specified by the signature itself!
  142. If you have the signature:
  143. .. code-block:: pycon
  144. >>> sig = add.s(10)
  145. then `sig.delay(result)` becomes:
  146. .. code-block:: pycon
  147. >>> add.apply_async(args=(result, 10))
  148. ...
  149. Now let's call our ``add`` task with a callback using partial
  150. arguments:
  151. .. code-block:: pycon
  152. >>> add.apply_async((2, 2), link=add.s(8))
  153. As expected this will first launch one task calculating :math:`2 + 2`, then
  154. another task calculating :math:`4 + 8`.
  155. The Primitives
  156. ==============
  157. .. versionadded:: 3.0
  158. .. topic:: Overview
  159. - ``group``
  160. The group primitive is a signature that takes a list of tasks that should
  161. be applied in parallel.
  162. - ``chain``
  163. The chain primitive lets us link together signatures so that one is called
  164. after the other, essentially forming a *chain* of callbacks.
  165. - ``chord``
  166. A chord is just like a group but with a callback. A chord consists
  167. of a header group and a body, where the body is a task that should execute
  168. after all of the tasks in the header are complete.
  169. - ``map``
  170. The map primitive works like the built-in ``map`` function, but creates
  171. a temporary task where a list of arguments is applied to the task.
  172. E.g. ``task.map([1, 2])`` results in a single task
  173. being called, applying the arguments in order to the task function so
  174. that the result is:
  175. .. code-block:: python
  176. res = [task(1), task(2)]
  177. - ``starmap``
  178. Works exactly like map except the arguments are applied as ``*args``.
  179. For example ``add.starmap([(2, 2), (4, 4)])`` results in a single
  180. task calling:
  181. .. code-block:: python
  182. res = [add(2, 2), add(4, 4)]
  183. - ``chunks``
  184. Chunking splits a long list of arguments into parts, e.g the operation:
  185. .. code-block:: pycon
  186. >>> items = zip(xrange(1000), xrange(1000)) # 1000 items
  187. >>> add.chunks(items, 10)
  188. will split the list of items into chunks of 10, resulting in 100
  189. tasks (each processing 10 items in sequence).
  190. The primitives are also signature objects themselves, so that they can be combined
  191. in any number of ways to compose complex work-flows.
  192. Here's some examples:
  193. - Simple chain
  194. Here's a simple chain, the first task executes passing its return value
  195. to the next task in the chain, and so on.
  196. .. code-block:: pycon
  197. >>> from celery import chain
  198. >>> # 2 + 2 + 4 + 8
  199. >>> res = chain(add.s(2, 2), add.s(4), add.s(8))()
  200. >>> res.get()
  201. 16
  202. This can also be written using pipes:
  203. .. code-block:: pycon
  204. >>> (add.s(2, 2) | add.s(4) | add.s(8))().get()
  205. 16
  206. - Immutable signatures
  207. Signatures can be partial so arguments can be
  208. added to the existing arguments, but you may not always want that,
  209. for example if you don't want the result of the previous task in a chain.
  210. In that case you can mark the signature as immutable, so that the arguments
  211. cannot be changed:
  212. .. code-block:: pycon
  213. >>> add.signature((2, 2), immutable=True)
  214. There's also an ``.si`` shortcut for this:
  215. .. code-block:: pycon
  216. >>> add.si(2, 2)
  217. Now you can create a chain of independent tasks instead:
  218. .. code-block:: pycon
  219. >>> res = (add.si(2, 2) | add.si(4, 4) | add.s(8, 8))()
  220. >>> res.get()
  221. 16
  222. >>> res.parent.get()
  223. 8
  224. >>> res.parent.parent.get()
  225. 4
  226. - Simple group
  227. You can easily create a group of tasks to execute in parallel:
  228. .. code-block:: pycon
  229. >>> from celery import group
  230. >>> res = group(add.s(i, i) for i in xrange(10))()
  231. >>> res.get(timeout=1)
  232. [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
  233. - Simple chord
  234. The chord primitive enables us to add callback to be called when
  235. all of the tasks in a group have finished executing, which is often
  236. required for algorithms that aren't embarrassingly parallel:
  237. .. code-block:: pycon
  238. >>> from celery import chord
  239. >>> res = chord((add.s(i, i) for i in xrange(10)), xsum.s())()
  240. >>> res.get()
  241. 90
  242. The above example creates 10 task that all start in parallel,
  243. and when all of them are complete the return values are combined
  244. into a list and sent to the ``xsum`` task.
  245. The body of a chord can also be immutable, so that the return value
  246. of the group is not passed on to the callback:
  247. .. code-block:: pycon
  248. >>> chord((import_contact.s(c) for c in contacts),
  249. ... notify_complete.si(import_id)).apply_async()
  250. Note the use of ``.si`` above which creates an immutable signature.
  251. - Blow your mind by combining
  252. Chains can be partial too:
  253. .. code-block:: pycon
  254. >>> c1 = (add.s(4) | mul.s(8))
  255. # (16 + 4) * 8
  256. >>> res = c1(16)
  257. >>> res.get()
  258. 160
  259. Which means that you can combine chains:
  260. .. code-block:: pycon
  261. # ((4 + 16) * 2 + 4) * 8
  262. >>> c2 = (add.s(4, 16) | mul.s(2) | (add.s(4) | mul.s(8)))
  263. >>> res = c2()
  264. >>> res.get()
  265. 352
  266. Chaining a group together with another task will automatically
  267. upgrade it to be a chord:
  268. .. code-block:: pycon
  269. >>> c3 = (group(add.s(i, i) for i in xrange(10)) | xsum.s())
  270. >>> res = c3()
  271. >>> res.get()
  272. 90
  273. Groups and chords accepts partial arguments too, so in a chain
  274. the return value of the previous task is forwarded to all tasks in the group:
  275. .. code-block:: pycon
  276. >>> new_user_workflow = (create_user.s() | group(
  277. ... import_contacts.s(),
  278. ... send_welcome_email.s()))
  279. ... new_user_workflow.delay(username='artv',
  280. ... first='Art',
  281. ... last='Vandelay',
  282. ... email='art@vandelay.com')
  283. If you don't want to forward arguments to the group then
  284. you can make the signatures in the group immutable:
  285. .. code-block:: pycon
  286. >>> res = (add.s(4, 4) | group(add.si(i, i) for i in xrange(10)))()
  287. >>> res.get()
  288. <GroupResult: de44df8c-821d-4c84-9a6a-44769c738f98 [
  289. bc01831b-9486-4e51-b046-480d7c9b78de,
  290. 2650a1b8-32bf-4771-a645-b0a35dcc791b,
  291. dcbee2a5-e92d-4b03-b6eb-7aec60fd30cf,
  292. 59f92e0a-23ea-41ce-9fad-8645a0e7759c,
  293. 26e1e707-eccf-4bf4-bbd8-1e1729c3cce3,
  294. 2d10a5f4-37f0-41b2-96ac-a973b1df024d,
  295. e13d3bdb-7ae3-4101-81a4-6f17ee21df2d,
  296. 104b2be0-7b75-44eb-ac8e-f9220bdfa140,
  297. c5c551a5-0386-4973-aa37-b65cbeb2624b,
  298. 83f72d71-4b71-428e-b604-6f16599a9f37]>
  299. >>> res.parent.get()
  300. 8
  301. .. _canvas-chain:
  302. Chains
  303. ------
  304. .. versionadded:: 3.0
  305. Tasks can be linked together, which in practice means adding
  306. a callback task:
  307. .. code-block:: pycon
  308. >>> res = add.apply_async((2, 2), link=mul.s(16))
  309. >>> res.get()
  310. 4
  311. The linked task will be applied with the result of its parent
  312. task as the first argument, which in the above case will result
  313. in ``mul(4, 16)`` since the result is 4.
  314. The results will keep track of any subtasks called by the original task,
  315. and this can be accessed from the result instance:
  316. .. code-block:: pycon
  317. >>> res.children
  318. [<AsyncResult: 8c350acf-519d-4553-8a53-4ad3a5c5aeb4>]
  319. >>> res.children[0].get()
  320. 64
  321. The result instance also has a :meth:`~@AsyncResult.collect` method
  322. that treats the result as a graph, enabling you to iterate over
  323. the results:
  324. .. code-block:: pycon
  325. >>> list(res.collect())
  326. [(<AsyncResult: 7b720856-dc5f-4415-9134-5c89def5664e>, 4),
  327. (<AsyncResult: 8c350acf-519d-4553-8a53-4ad3a5c5aeb4>, 64)]
  328. By default :meth:`~@AsyncResult.collect` will raise an
  329. :exc:`~@IncompleteStream` exception if the graph is not fully
  330. formed (one of the tasks has not completed yet),
  331. but you can get an intermediate representation of the graph
  332. too:
  333. .. code-block:: pycon
  334. >>> for result, value in res.collect(intermediate=True)):
  335. ....
  336. You can link together as many tasks as you like,
  337. and signatures can be linked too:
  338. .. code-block:: pycon
  339. >>> s = add.s(2, 2)
  340. >>> s.link(mul.s(4))
  341. >>> s.link(log_result.s())
  342. You can also add *error callbacks* using the `on_error` method::
  343. .. code-block:: pycon
  344. >>> add.s(2, 2).on_error(log_error.s()).delay()
  345. Which will resut in the following ``.apply_async`` call when the signature
  346. is applied:
  347. .. code-block:: pycon
  348. >>> add.apply_async((2, 2), link_error=log_error.s())
  349. The worker will not actually call the errback as a task, but will
  350. instead call the errback function directly so that the raw request, exception
  351. and traceback objects can be passed to it.
  352. Here's an example errback:
  353. .. code-block:: python
  354. from __future__ import print_function
  355. import os
  356. from proj.celery import app
  357. @app.task
  358. def log_error(request, exc, traceback):
  359. with open(os.path.join('/var/errors', request.id), 'a') as fh:
  360. print('--\n\n{0} {1} {2}'.format(
  361. task_id, exc, traceback), file=fh)
  362. To make it even easier to link tasks together there is
  363. a special signature called :class:`~celery.chain` that lets
  364. you chain tasks together:
  365. .. code-block:: pycon
  366. >>> from celery import chain
  367. >>> from proj.tasks import add, mul
  368. >>> # (4 + 4) * 8 * 10
  369. >>> res = chain(add.s(4, 4), mul.s(8), mul.s(10))
  370. proj.tasks.add(4, 4) | proj.tasks.mul(8) | proj.tasks.mul(10)
  371. Calling the chain will call the tasks in the current process
  372. and return the result of the last task in the chain:
  373. .. code-block:: pycon
  374. >>> res = chain(add.s(4, 4), mul.s(8), mul.s(10))()
  375. >>> res.get()
  376. 640
  377. It also sets ``parent`` attributes so that you can
  378. work your way up the chain to get intermediate results:
  379. .. code-block:: pycon
  380. >>> res.parent.get()
  381. 64
  382. >>> res.parent.parent.get()
  383. 8
  384. >>> res.parent.parent
  385. <AsyncResult: eeaad925-6778-4ad1-88c8-b2a63d017933>
  386. Chains can also be made using the ``|`` (pipe) operator:
  387. .. code-block:: pycon
  388. >>> (add.s(2, 2) | mul.s(8) | mul.s(10)).apply_async()
  389. Graphs
  390. ~~~~~~
  391. In addition you can work with the result graph as a
  392. :class:`~celery.utils.graph.DependencyGraph`:
  393. .. code-block:: pycon
  394. >>> res = chain(add.s(4, 4), mul.s(8), mul.s(10))()
  395. >>> res.parent.parent.graph
  396. 285fa253-fcf8-42ef-8b95-0078897e83e6(1)
  397. 463afec2-5ed4-4036-b22d-ba067ec64f52(0)
  398. 872c3995-6fa0-46ca-98c2-5a19155afcf0(2)
  399. 285fa253-fcf8-42ef-8b95-0078897e83e6(1)
  400. 463afec2-5ed4-4036-b22d-ba067ec64f52(0)
  401. You can even convert these graphs to *dot* format:
  402. .. code-block:: pycon
  403. >>> with open('graph.dot', 'w') as fh:
  404. ... res.parent.parent.graph.to_dot(fh)
  405. and create images:
  406. .. code-block:: console
  407. $ dot -Tpng graph.dot -o graph.png
  408. .. image:: ../images/result_graph.png
  409. .. _canvas-group:
  410. Groups
  411. ------
  412. .. versionadded:: 3.0
  413. A group can be used to execute several tasks in parallel.
  414. The :class:`~celery.group` function takes a list of signatures:
  415. .. code-block:: pycon
  416. >>> from celery import group
  417. >>> from proj.tasks import add
  418. >>> group(add.s(2, 2), add.s(4, 4))
  419. (proj.tasks.add(2, 2), proj.tasks.add(4, 4))
  420. If you **call** the group, the tasks will be applied
  421. one after another in the current process, and a :class:`~celery.result.GroupResult`
  422. instance is returned which can be used to keep track of the results,
  423. or tell how many tasks are ready and so on:
  424. .. code-block:: pycon
  425. >>> g = group(add.s(2, 2), add.s(4, 4))
  426. >>> res = g()
  427. >>> res.get()
  428. [4, 8]
  429. Group also supports iterators:
  430. .. code-block:: pycon
  431. >>> group(add.s(i, i) for i in xrange(100))()
  432. A group is a signature object, so it can be used in combination
  433. with other signatures.
  434. Group Results
  435. ~~~~~~~~~~~~~
  436. The group task returns a special result too,
  437. this result works just like normal task results, except
  438. that it works on the group as a whole:
  439. .. code-block:: pycon
  440. >>> from celery import group
  441. >>> from tasks import add
  442. >>> job = group([
  443. ... add.s(2, 2),
  444. ... add.s(4, 4),
  445. ... add.s(8, 8),
  446. ... add.s(16, 16),
  447. ... add.s(32, 32),
  448. ... ])
  449. >>> result = job.apply_async()
  450. >>> result.ready() # have all subtasks completed?
  451. True
  452. >>> result.successful() # were all subtasks successful?
  453. True
  454. >>> result.get()
  455. [4, 8, 16, 32, 64]
  456. The :class:`~celery.result.GroupResult` takes a list of
  457. :class:`~celery.result.AsyncResult` instances and operates on them as
  458. if it was a single task.
  459. It supports the following operations:
  460. * :meth:`~celery.result.GroupResult.successful`
  461. Return :const:`True` if all of the subtasks finished
  462. successfully (e.g. did not raise an exception).
  463. * :meth:`~celery.result.GroupResult.failed`
  464. Return :const:`True` if any of the subtasks failed.
  465. * :meth:`~celery.result.GroupResult.waiting`
  466. Return :const:`True` if any of the subtasks
  467. is not ready yet.
  468. * :meth:`~celery.result.GroupResult.ready`
  469. Return :const:`True` if all of the subtasks
  470. are ready.
  471. * :meth:`~celery.result.GroupResult.completed_count`
  472. Return the number of completed subtasks.
  473. * :meth:`~celery.result.GroupResult.revoke`
  474. Revoke all of the subtasks.
  475. * :meth:`~celery.result.GroupResult.join`
  476. Gather the results for all of the subtasks
  477. and return a list with them ordered by the order of which they
  478. were called.
  479. .. _canvas-chord:
  480. Chords
  481. ------
  482. .. versionadded:: 2.3
  483. .. note::
  484. Tasks used within a chord must *not* ignore their results. If the result
  485. backend is disabled for *any* task (header or body) in your chord you
  486. should read ":ref:`chord-important-notes`".
  487. A chord is a task that only executes after all of the tasks in a group have
  488. finished executing.
  489. Let's calculate the sum of the expression
  490. :math:`1 + 1 + 2 + 2 + 3 + 3 ... n + n` up to a hundred digits.
  491. First you need two tasks, :func:`add` and :func:`tsum` (:func:`sum` is
  492. already a standard function):
  493. .. code-block:: python
  494. @app.task
  495. def add(x, y):
  496. return x + y
  497. @app.task
  498. def tsum(numbers):
  499. return sum(numbers)
  500. Now you can use a chord to calculate each addition step in parallel, and then
  501. get the sum of the resulting numbers:
  502. .. code-block:: pycon
  503. >>> from celery import chord
  504. >>> from tasks import add, tsum
  505. >>> chord(add.s(i, i)
  506. ... for i in xrange(100))(tsum.s()).get()
  507. 9900
  508. This is obviously a very contrived example, the overhead of messaging and
  509. synchronization makes this a lot slower than its Python counterpart:
  510. .. code-block:: pycon
  511. >>> sum(i + i for i in xrange(100))
  512. The synchronization step is costly, so you should avoid using chords as much
  513. as possible. Still, the chord is a powerful primitive to have in your toolbox
  514. as synchronization is a required step for many parallel algorithms.
  515. Let's break the chord expression down:
  516. .. code-block:: pycon
  517. >>> callback = tsum.s()
  518. >>> header = [add.s(i, i) for i in range(100)]
  519. >>> result = chord(header)(callback)
  520. >>> result.get()
  521. 9900
  522. Remember, the callback can only be executed after all of the tasks in the
  523. header have returned. Each step in the header is executed as a task, in
  524. parallel, possibly on different nodes. The callback is then applied with
  525. the return value of each task in the header. The task id returned by
  526. :meth:`chord` is the id of the callback, so you can wait for it to complete
  527. and get the final return value (but remember to :ref:`never have a task wait
  528. for other tasks <task-synchronous-subtasks>`)
  529. .. _chord-errors:
  530. Error handling
  531. ~~~~~~~~~~~~~~
  532. So what happens if one of the tasks raises an exception?
  533. The chord callback result will transition to the failure state, and the error is set
  534. to the :exc:`~@ChordError` exception:
  535. .. code-block:: pycon
  536. >>> c = chord([add.s(4, 4), raising_task.s(), add.s(8, 8)])
  537. >>> result = c()
  538. >>> result.get()
  539. .. code-block:: pytb
  540. Traceback (most recent call last):
  541. File "<stdin>", line 1, in <module>
  542. File "*/celery/result.py", line 120, in get
  543. interval=interval)
  544. File "*/celery/backends/amqp.py", line 150, in wait_for
  545. raise meta['result']
  546. celery.exceptions.ChordError: Dependency 97de6f3f-ea67-4517-a21c-d867c61fcb47
  547. raised ValueError('something something',)
  548. While the traceback may be different depending on which result backend is
  549. being used, you can see the error description includes the id of the task that failed
  550. and a string representation of the original exception. You can also
  551. find the original traceback in ``result.traceback``.
  552. Note that the rest of the tasks will still execute, so the third task
  553. (``add.s(8, 8)``) is still executed even though the middle task failed.
  554. Also the :exc:`~@ChordError` only shows the task that failed
  555. first (in time): it does not respect the ordering of the header group.
  556. To perform an action when a chord fails you can therefore attach
  557. an errback to the chord callback:
  558. .. code-block:: python
  559. @app.task
  560. def on_chord_error(request, exc, traceback):
  561. print('Task {0!r} raised error: {1!r}'.format(request.id, exc))
  562. .. code-block:: pycon
  563. >>> c = (group(add.s(i, i) for i in range(10)) |
  564. ... xsum.s().on_error(on_chord_error.s()))).delay()
  565. .. _chord-important-notes:
  566. Important Notes
  567. ~~~~~~~~~~~~~~~
  568. Tasks used within a chord must *not* ignore their results. In practice this
  569. means that you must enable a :const:`result_backend` in order to use
  570. chords. Additionally, if :const:`task_ignore_result` is set to :const:`True`
  571. in your configuration, be sure that the individual tasks to be used within
  572. the chord are defined with :const:`ignore_result=False`. This applies to both
  573. Task subclasses and decorated tasks.
  574. Example Task subclass:
  575. .. code-block:: python
  576. class MyTask(Task):
  577. ignore_result = False
  578. Example decorated task:
  579. .. code-block:: python
  580. @app.task(ignore_result=False)
  581. def another_task(project):
  582. do_something()
  583. By default the synchronization step is implemented by having a recurring task
  584. poll the completion of the group every second, calling the signature when
  585. ready.
  586. Example implementation:
  587. .. code-block:: python
  588. from celery import maybe_signature
  589. @app.task(bind=True)
  590. def unlock_chord(self, group, callback, interval=1, max_retries=None):
  591. if group.ready():
  592. return maybe_signature(callback).delay(group.join())
  593. raise self.retry(countdown=interval, max_retries=max_retries)
  594. This is used by all result backends except Redis and Memcached, which
  595. increment a counter after each task in the header, then applying the callback
  596. when the counter exceeds the number of tasks in the set. *Note:* chords do not
  597. properly work with Redis before version 2.2; you will need to upgrade to at
  598. least 2.2 to use them.
  599. The Redis and Memcached approach is a much better solution, but not easily
  600. implemented in other backends (suggestions welcome!).
  601. .. note::
  602. If you are using chords with the Redis result backend and also overriding
  603. the :meth:`Task.after_return` method, you need to make sure to call the
  604. super method or else the chord callback will not be applied.
  605. .. code-block:: python
  606. def after_return(self, *args, **kwargs):
  607. do_something()
  608. super(MyTask, self).after_return(*args, **kwargs)
  609. .. _canvas-map:
  610. Map & Starmap
  611. -------------
  612. :class:`~celery.map` and :class:`~celery.starmap` are built-in tasks
  613. that calls the task for every element in a sequence.
  614. They differ from group in that
  615. - only one task message is sent
  616. - the operation is sequential.
  617. For example using ``map``:
  618. .. code-block:: pycon
  619. >>> from proj.tasks import add
  620. >>> ~xsum.map([range(10), range(100)])
  621. [45, 4950]
  622. is the same as having a task doing:
  623. .. code-block:: python
  624. @app.task
  625. def temp():
  626. return [xsum(range(10)), xsum(range(100))]
  627. and using ``starmap``:
  628. .. code-block:: pycon
  629. >>> ~add.starmap(zip(range(10), range(10)))
  630. [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
  631. is the same as having a task doing:
  632. .. code-block:: python
  633. @app.task
  634. def temp():
  635. return [add(i, i) for i in range(10)]
  636. Both ``map`` and ``starmap`` are signature objects, so they can be used as
  637. other signatures and combined in groups etc., for example
  638. to call the starmap after 10 seconds:
  639. .. code-block:: pycon
  640. >>> add.starmap(zip(range(10), range(10))).apply_async(countdown=10)
  641. .. _canvas-chunks:
  642. Chunks
  643. ------
  644. Chunking lets you divide an iterable of work into pieces, so that if
  645. you have one million objects, you can create 10 tasks with hundred
  646. thousand objects each.
  647. Some may worry that chunking your tasks results in a degradation
  648. of parallelism, but this is rarely true for a busy cluster
  649. and in practice since you are avoiding the overhead of messaging
  650. it may considerably increase performance.
  651. To create a chunks signature you can use :meth:`@Task.chunks`:
  652. .. code-block:: pycon
  653. >>> add.chunks(zip(range(100), range(100)), 10)
  654. As with :class:`~celery.group` the act of sending the messages for
  655. the chunks will happen in the current process when called:
  656. .. code-block:: pycon
  657. >>> from proj.tasks import add
  658. >>> res = add.chunks(zip(range(100), range(100)), 10)()
  659. >>> res.get()
  660. [[0, 2, 4, 6, 8, 10, 12, 14, 16, 18],
  661. [20, 22, 24, 26, 28, 30, 32, 34, 36, 38],
  662. [40, 42, 44, 46, 48, 50, 52, 54, 56, 58],
  663. [60, 62, 64, 66, 68, 70, 72, 74, 76, 78],
  664. [80, 82, 84, 86, 88, 90, 92, 94, 96, 98],
  665. [100, 102, 104, 106, 108, 110, 112, 114, 116, 118],
  666. [120, 122, 124, 126, 128, 130, 132, 134, 136, 138],
  667. [140, 142, 144, 146, 148, 150, 152, 154, 156, 158],
  668. [160, 162, 164, 166, 168, 170, 172, 174, 176, 178],
  669. [180, 182, 184, 186, 188, 190, 192, 194, 196, 198]]
  670. while calling ``.apply_async`` will create a dedicated
  671. task so that the individual tasks are applied in a worker
  672. instead:
  673. .. code-block:: pycon
  674. >>> add.chunks(zip(range(100), range(100)), 10).apply_async()
  675. You can also convert chunks to a group:
  676. .. code-block:: pycon
  677. >>> group = add.chunks(zip(range(100), range(100)), 10).group()
  678. and with the group skew the countdown of each task by increments
  679. of one:
  680. .. code-block:: pycon
  681. >>> group.skew(start=1, stop=10)()
  682. which means that the first task will have a countdown of 1, the second
  683. a countdown of 2 and so on.