| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170 | .. _guide-workers:=============== Workers Guide===============.. contents::    :local:    :depth: 1.. _worker-starting:Starting the worker===================.. sidebar:: Daemonizing    You probably want to use a daemonization tool to start    the worker in the background. See :ref:`daemonizing` for help    starting the worker as a daemon using popular service managers.You can start the worker in the foreground by executing the command:.. code-block:: console    $ celery -A proj worker -l infoFor a full list of available command-line options see:mod:`~celery.bin.worker`, or simply do:.. code-block:: console    $ celery worker --helpYou can start multiple workers on the same machine, butbe sure to name each individual worker by specifying anode name with the :option:`--hostname <celery worker --hostname>` argument:.. code-block:: console    $ celery -A proj worker --loglevel=INFO --concurrency=10 -n worker1@%h    $ celery -A proj worker --loglevel=INFO --concurrency=10 -n worker2@%h    $ celery -A proj worker --loglevel=INFO --concurrency=10 -n worker3@%hThe ``hostname`` argument can expand the following variables:    - ``%h``:  Hostname, including domain name.    - ``%n``:  Hostname only.    - ``%d``:  Domain name only.If the current hostname is *george.example.com*, these will expand to:+----------+----------------+------------------------------+| Variable | Template       | Result                       |+----------+----------------+------------------------------+| ``%h``   | ``worker1@%h`` | *worker1@george.example.com* |+----------+----------------+------------------------------+| ``%n``   | ``worker1@%n`` | *worker1@george*             |+----------+----------------+------------------------------+| ``%d``   | ``worker1@%d`` | *worker1@example.com*        |+----------+----------------+------------------------------+.. admonition:: Note for :pypi:`supervisor` users   The ``%`` sign must be escaped by adding a second one: `%%h`... _worker-stopping:Stopping the worker===================Shutdown should be accomplished using the :sig:`TERM` signal.When shutdown is initiated the worker will finish all currently executingtasks before it actually terminates. If these tasks are important, you shouldwait for it to finish before doing anything drastic, like sending the :sig:`KILL`signal.If the worker won't shutdown after considerate time, for beingstuck in an infinite-loop or similar, you can use the :sig:`KILL` signal toforce terminate the worker: but be aware that currently executing tasks willbe lost (i.e., unless the tasks have the :attr:`~@Task.acks_late`option set).Also as processes can't override the :sig:`KILL` signal, the worker willnot be able to reap its children; make sure to do so manually. Thiscommand usually does the trick:.. code-block:: console    $ pkill -9 -f 'celery worker'If you don't have the :command:`pkill` command on your system, you can use the slightlylonger version:.. code-block:: console    $ ps auxww | grep 'celery worker' | awk '{print $2}' | xargs kill -9.. _worker-restarting:Restarting the worker=====================To restart the worker you should send the `TERM` signal and start a newinstance. The easiest way to manage workers for developmentis by using `celery multi`:.. code-block:: console    $ celery multi start 1 -A proj -l info -c4 --pidfile=/var/run/celery/%n.pid    $ celery multi restart 1 --pidfile=/var/run/celery/%n.pidFor production deployments you should be using init-scripts or a processsupervision system (see :ref:`daemonizing`).Other than stopping, then starting the worker to restart, you can alsorestart the worker using the :sig:`HUP` signal. Note that the workerwill be responsible for restarting itself so this is prone to problems andisn't recommended in production:.. code-block:: console    $ kill -HUP $pid.. note::    Restarting by :sig:`HUP` only works if the worker is running    in the background as a daemon (it doesn't have a controlling    terminal).    :sig:`HUP` is disabled on macOS because of a limitation on    that platform... _worker-process-signals:Process Signals===============The worker's main process overrides the following signals:+--------------+-------------------------------------------------+| :sig:`TERM`  | Warm shutdown, wait for tasks to complete.      |+--------------+-------------------------------------------------+| :sig:`QUIT`  | Cold shutdown, terminate ASAP                   |+--------------+-------------------------------------------------+| :sig:`USR1`  | Dump traceback for all active threads.          |+--------------+-------------------------------------------------+| :sig:`USR2`  | Remote debug, see :mod:`celery.contrib.rdb`.    |+--------------+-------------------------------------------------+.. _worker-files:Variables in file paths=======================The file path arguments for :option:`--logfile <celery worker --logfile>`,:option:`--pidfile <celery worker --pidfile>`, and:option:`--statedb <celery worker --statedb>` can contain variables that theworker will expand:Node name replacements----------------------- ``%p``:  Full node name.- ``%h``:  Hostname, including domain name.- ``%n``:  Hostname only.- ``%d``:  Domain name only.- ``%i``:  Prefork pool process index or 0 if MainProcess.- ``%I``:  Prefork pool process index with separator.For example, if the current hostname is ``george@foo.example.com`` thenthese will expand to:- ``--logfile=%p.log`` -> :file:`george@foo.example.com.log`- ``--logfile=%h.log`` -> :file:`foo.example.com.log`- ``--logfile=%n.log`` -> :file:`george.log`- ``--logfile=%d.log`` -> :file:`example.com.log`.. _worker-files-process-index:Prefork pool process index--------------------------The prefork pool process index specifiers will expand into a differentfilename depending on the process that'll eventually need to open the file.This can be used to specify one log file per child process.Note that the numbers will stay within the process limit even if processesexit or if autoscale/``maxtasksperchild``/time limits are used.  That is, the numberis the *process index* not the process count or pid.* ``%i`` - Pool process index or 0 if MainProcess.    Where ``-n worker1@example.com -c2 -f %n-%i.log`` will result in    three log files:        - :file:`worker1-0.log` (main process)        - :file:`worker1-1.log` (pool process 1)        - :file:`worker1-2.log` (pool process 2)* ``%I`` - Pool process index with separator.    Where ``-n worker1@example.com -c2 -f %n%I.log`` will result in    three log files:        - :file:`worker1.log` (main process)        - :file:`worker1-1.log` (pool process 1)        - :file:`worker1-2.log` (pool process 2).. _worker-concurrency:Concurrency===========By default multiprocessing is used to perform concurrent execution of tasks,but you can also use :ref:`Eventlet <concurrency-eventlet>`. The numberof worker processes/threads can be changed using the:option:`--concurrency <celery worker --concurrency>` argument and defaultsto the number of CPUs available on the machine... admonition:: Number of processes (multiprocessing/prefork pool)    More pool processes are usually better, but there's a cut-off point where    adding more pool processes affects performance in negative ways.    There's even some evidence to support that having multiple worker    instances running, may perform better than having a single worker.    For example 3 workers with 10 pool processes each. You need to experiment    to find the numbers that works best for you, as this varies based on    application, work load, task run times and other factors... _worker-remote-control:Remote control==============.. versionadded:: 2.0.. sidebar:: The ``celery`` command    The :program:`celery` program is used to execute remote control    commands from the command-line. It supports all of the commands    listed below. See :ref:`monitoring-control` for more information.:pool support: *prefork, eventlet, gevent*, blocking:*solo* (see note):broker support: *amqp, redis*Workers have the ability to be remote controlled using a high-prioritybroadcast message queue. The commands can be directed to all, or a specificlist of workers.Commands can also have replies. The client can then wait for and collectthose replies. Since there's no central authority to know how manyworkers are available in the cluster, there's also no way to estimatehow many workers may send a reply, so the client has a configurabletimeout — the deadline in seconds for replies to arrive in. This timeoutdefaults to one second. If the worker doesn't reply within the deadlineit doesn't necessarily mean the worker didn't reply, or worse is dead, butmay simply be caused by network latency or the worker being slow at processingcommands, so adjust the timeout accordingly.In addition to timeouts, the client can specify the maximum numberof replies to wait for. If a destination is specified, this limit is setto the number of destination hosts... note::    The ``solo`` pool supports remote control commands,    but any task executing will block any waiting control command,    so it is of limited use if the worker is very busy. In that    case you must increase the timeout waiting for replies in the client... _worker-broadcast-fun:The :meth:`~@control.broadcast` function----------------------------------------------------This is the client function used to send commands to the workers.Some remote control commands also have higher-level interfaces using:meth:`~@control.broadcast` in the background, like:meth:`~@control.rate_limit`, and :meth:`~@control.ping`.Sending the :control:`rate_limit` command and keyword arguments:.. code-block:: pycon    >>> app.control.broadcast('rate_limit',    ...                          arguments={'task_name': 'myapp.mytask',    ...                                     'rate_limit': '200/m'})This will send the command asynchronously, without waiting for a reply.To request a reply you have to use the `reply` argument:.. code-block:: pycon    >>> app.control.broadcast('rate_limit', {    ...     'task_name': 'myapp.mytask', 'rate_limit': '200/m'}, reply=True)    [{'worker1.example.com': 'New rate limit set successfully'},     {'worker2.example.com': 'New rate limit set successfully'},     {'worker3.example.com': 'New rate limit set successfully'}]Using the `destination` argument you can specify a list of workersto receive the command:.. code-block:: pycon    >>> app.control.broadcast('rate_limit', {    ...     'task_name': 'myapp.mytask',    ...     'rate_limit': '200/m'}, reply=True,    ...                             destination=['worker1@example.com'])    [{'worker1.example.com': 'New rate limit set successfully'}]Of course, using the higher-level interface to set rate limits is muchmore convenient, but there are commands that can only be requestedusing :meth:`~@control.broadcast`.Commands========.. control:: revoke``revoke``: Revoking tasks--------------------------:pool support: all, terminate only supported by prefork:broker support: *amqp, redis*:command: :program:`celery -A proj control revoke <task_id>`All worker nodes keeps a memory of revoked task ids, either in-memory orpersistent on disk (see :ref:`worker-persistent-revokes`).When a worker receives a revoke request it will skip executingthe task, but it won't terminate an already executing task unlessthe `terminate` option is set... note::    The terminate option is a last resort for administrators when    a task is stuck. It's not for terminating the task,    it's for terminating the process that's executing the task, and that    process may have already started processing another task at the point    when the signal is sent, so for this reason you must never call this    programmatically.If `terminate` is set the worker child process processing the taskwill be terminated. The default signal sent is `TERM`, but you canspecify this using the `signal` argument. Signal can be the uppercase nameof any signal defined in the :mod:`signal` module in the Python StandardLibrary.Terminating a task also revokes it.**Example**.. code-block:: pycon    >>> result.revoke()    >>> AsyncResult(id).revoke()    >>> app.control.revoke('d9078da5-9915-40a0-bfa1-392c7bde42ed')    >>> app.control.revoke('d9078da5-9915-40a0-bfa1-392c7bde42ed',    ...                    terminate=True)    >>> app.control.revoke('d9078da5-9915-40a0-bfa1-392c7bde42ed',    ...                    terminate=True, signal='SIGKILL')Revoking multiple tasks-----------------------.. versionadded:: 3.1The revoke method also accepts a list argument, where it will revokeseveral tasks at once.**Example**.. code-block:: pycon    >>> app.control.revoke([    ...    '7993b0aa-1f0b-4780-9af0-c47c0858b3f2',    ...    'f565793e-b041-4b2b-9ca4-dca22762a55d',    ...    'd9d35e03-2997-42d0-a13e-64a66b88a618',    ])The ``GroupResult.revoke`` method takes advantage of this sinceversion 3.1... _worker-persistent-revokes:Persistent revokes------------------Revoking tasks works by sending a broadcast message to all the workers,the workers then keep a list of revoked tasks in memory. When a worker startsup it will synchronize revoked tasks with other workers in the cluster.The list of revoked tasks is in-memory so if all workers restart the listof revoked ids will also vanish. If you want to preserve this list betweenrestarts you need to specify a file for these to be stored in by using the `--statedb`argument to :program:`celery worker`:.. code-block:: console    $ celery -A proj worker -l info --statedb=/var/run/celery/worker.stateor if you use :program:`celery multi` you want to create one file perworker instance so use the `%n` format to expand the current nodename:.. code-block:: console    celery multi start 2 -l info --statedb=/var/run/celery/%n.stateSee also :ref:`worker-files`Note that remote control commands must be working for revokes to work.Remote control commands are only supported by the RabbitMQ (amqp) and Redisat this point... _worker-time-limits:Time Limits===========.. versionadded:: 2.0:pool support: *prefork/gevent*.. sidebar:: Soft, or hard?    The time limit is set in two values, `soft` and `hard`.    The soft time limit allows the task to catch an exception    to clean up before it is killed: the hard timeout isn't catch-able    and force terminates the task.A single task can potentially run forever, if you have lots of taskswaiting for some event that'll never happen you'll block the workerfrom processing new tasks indefinitely. The best way to defend againstthis scenario happening is enabling time limits.The time limit (`--time-limit`) is the maximum number of seconds a taskmay run before the process executing it is terminated and replaced by anew process. You can also enable a soft time limit (`--soft-time-limit`),this raises an exception the task can catch to clean up before the hardtime limit kills it:.. code-block:: python    from myapp import app    from celery.exceptions import SoftTimeLimitExceeded    @app.task    def mytask():        try:            do_work()        except SoftTimeLimitExceeded:            clean_up_in_a_hurry()Time limits can also be set using the :setting:`task_time_limit` /:setting:`task_soft_time_limit` settings... note::    Time limits don't currently work on platforms that don't support    the :sig:`SIGUSR1` signal.Changing time limits at run-time--------------------------------.. versionadded:: 2.3:broker support: *amqp, redis*There's a remote control command that enables you to change both softand hard time limits for a task — named ``time_limit``.Example changing the time limit for the ``tasks.crawl_the_web`` taskto have a soft time limit of one minute, and a hard time limit oftwo minutes:.. code-block:: pycon    >>> app.control.time_limit('tasks.crawl_the_web',                               soft=60, hard=120, reply=True)    [{'worker1.example.com': {'ok': 'time limits set successfully'}}]Only tasks that starts executing after the time limit change will be affected... _worker-rate-limits:Rate Limits===========.. control:: rate_limitChanging rate-limits at run-time--------------------------------Example changing the rate limit for the `myapp.mytask` task to executeat most 200 tasks of that type every minute:.. code-block:: pycon    >>> app.control.rate_limit('myapp.mytask', '200/m')The above doesn't specify a destination, so the change request will affectall worker instances in the cluster. If you only want to affect a specificlist of workers you can include the ``destination`` argument:.. code-block:: pycon    >>> app.control.rate_limit('myapp.mytask', '200/m',    ...            destination=['celery@worker1.example.com']).. warning::    This won't affect workers with the    :setting:`worker_disable_rate_limits` setting enabled... _worker-max-tasks-per-child:Max tasks per child setting===========================.. versionadded:: 2.0:pool support: *prefork*With this option you can configure the maximum number of tasksa worker can execute before it's replaced by a new process.This is useful if you have memory leaks you have no control overfor example from closed source C extensions.The option can be set using the workers:option:`--max-tasks-per-child <celery worker --max-tasks-per-child>` argumentor using the :setting:`worker_max_tasks_per_child` setting... _worker-max-memory-per-child:Max memory per child setting============================.. versionadded:: 4.0:pool support: *prefork*With this option you can configure the maximum amount of residentmemory a worker can execute before it's replaced by a new process.This is useful if you have memory leaks you have no control overfor example from closed source C extensions.The option can be set using the workers:option:`--max-memory-per-child <celery worker --max-memory-per-child>` argumentor using the :setting:`worker_max_memory_per_child` setting... _worker-autoscaling:Autoscaling===========.. versionadded:: 2.2:pool support: *prefork*, *gevent*The *autoscaler* component is used to dynamically resize the poolbased on load:- The autoscaler adds more pool processes when there is work to do,    - and starts removing processes when the workload is low.It's enabled by the :option:`--autoscale <celery worker --autoscale>` option,which needs two numbers: the maximum and minimum number of pool processes:.. code-block:: text        --autoscale=AUTOSCALE             Enable autoscaling by providing             max_concurrency,min_concurrency.  Example:               --autoscale=10,3 (always keep 3 processes, but grow to              10 if necessary).You can also define your own rules for the autoscaler by subclassing:class:`~celery.worker.autoscaler.Autoscaler`.Some ideas for metrics include load average or the amount of memory available.You can specify a custom autoscaler with the :setting:`worker_autoscaler` setting... _worker-queues:Queues======A worker instance can consume from any number of queues.By default it will consume from all queues defined in the:setting:`task_queues` setting (that if not specified falls back to thedefault queue named ``celery``).You can specify what queues to consume from at start-up, by giving a commaseparated list of queues to the :option:`-Q <celery worker -Q>` option:.. code-block:: console    $ celery -A proj worker -l info -Q foo,bar,bazIf the queue name is defined in :setting:`task_queues` it will use thatconfiguration, but if it's not defined in the list of queues Celery willautomatically generate a new queue for you (depending on the:setting:`task_create_missing_queues` option).You can also tell the worker to start and stop consuming from a queue atrun-time using the remote control commands :control:`add_consumer` and:control:`cancel_consumer`... control:: add_consumerQueues: Adding consumers------------------------The :control:`add_consumer` control command will tell one or more workersto start consuming from a queue. This operation is idempotent.To tell all workers in the cluster to start consuming from a queuenamed "``foo``" you can use the :program:`celery control` program:.. code-block:: console    $ celery -A proj control add_consumer foo    -> worker1.local: OK        started consuming from u'foo'If you want to specify a specific worker you can use the:option:`--destination <celery control --destination>` argument:.. code-block:: console    $ celery -A proj control add_consumer foo -d celery@worker1.localThe same can be accomplished dynamically using the :meth:`@control.add_consumer` method:.. code-block:: pycon    >>> app.control.add_consumer('foo', reply=True)    [{u'worker1.local': {u'ok': u"already consuming from u'foo'"}}]    >>> app.control.add_consumer('foo', reply=True,    ...                          destination=['worker1@example.com'])    [{u'worker1.local': {u'ok': u"already consuming from u'foo'"}}]By now we've only shown examples using automatic queues,If you need more control you can also specify the exchange, routing_key andeven other options:.. code-block:: pycon    >>> app.control.add_consumer(    ...     queue='baz',    ...     exchange='ex',    ...     exchange_type='topic',    ...     routing_key='media.*',    ...     options={    ...         'queue_durable': False,    ...         'exchange_durable': False,    ...     },    ...     reply=True,    ...     destination=['w1@example.com', 'w2@example.com']).. control:: cancel_consumerQueues: Canceling consumers---------------------------You can cancel a consumer by queue name using the :control:`cancel_consumer`control command.To force all workers in the cluster to cancel consuming from a queueyou can use the :program:`celery control` program:.. code-block:: console    $ celery -A proj control cancel_consumer fooThe :option:`--destination <celery control --destination>` argument can beused to specify a worker, or a list of workers, to act on the command:.. code-block:: console    $ celery -A proj control cancel_consumer foo -d celery@worker1.localYou can also cancel consumers programmatically using the:meth:`@control.cancel_consumer` method:.. code-block:: console    >>> app.control.cancel_consumer('foo', reply=True)    [{u'worker1.local': {u'ok': u"no longer consuming from u'foo'"}}].. control:: active_queuesQueues: List of active queues-----------------------------You can get a list of queues that a worker consumes from by usingthe :control:`active_queues` control command:.. code-block:: console    $ celery -A proj inspect active_queues    [...]Like all other remote control commands this also supports the:option:`--destination <celery inspect --destination>` argument usedto specify the workers that should reply to the request:.. code-block:: console    $ celery -A proj inspect active_queues -d celery@worker1.local    [...]This can also be done programmatically by using the:meth:`@control.inspect.active_queues` method:.. code-block:: pycon    >>> app.control.inspect().active_queues()    [...]    >>> app.control.inspect(['worker1.local']).active_queues()    [...].. _worker-inspect:Inspecting workers==================:class:`@control.inspect` lets you inspect running workers. Ituses remote control commands under the hood.You can also use the ``celery`` command to inspect workers,and it supports the same commands as the :class:`@control` interface... code-block:: pycon    >>> # Inspect all nodes.    >>> i = app.control.inspect()    >>> # Specify multiple nodes to inspect.    >>> i = app.control.inspect(['worker1.example.com',                                'worker2.example.com'])    >>> # Specify a single node to inspect.    >>> i = app.control.inspect('worker1.example.com').. _worker-inspect-registered-tasks:Dump of registered tasks------------------------You can get a list of tasks registered in the worker using the:meth:`~@control.inspect.registered`:.. code-block:: pycon    >>> i.registered()    [{'worker1.example.com': ['tasks.add',                              'tasks.sleeptask']}].. _worker-inspect-active-tasks:Dump of currently executing tasks---------------------------------You can get a list of active tasks using:meth:`~@control.inspect.active`:.. code-block:: pycon    >>> i.active()    [{'worker1.example.com':        [{'name': 'tasks.sleeptask',          'id': '32666e9b-809c-41fa-8e93-5ae0c80afbbf',          'args': '(8,)',          'kwargs': '{}'}]}].. _worker-inspect-eta-schedule:Dump of scheduled (ETA) tasks-----------------------------You can get a list of tasks waiting to be scheduled by using:meth:`~@control.inspect.scheduled`:.. code-block:: pycon    >>> i.scheduled()    [{'worker1.example.com':        [{'eta': '2010-06-07 09:07:52', 'priority': 0,          'request': {            'name': 'tasks.sleeptask',            'id': '1a7980ea-8b19-413e-91d2-0b74f3844c4d',            'args': '[1]',            'kwargs': '{}'}},         {'eta': '2010-06-07 09:07:53', 'priority': 0,          'request': {            'name': 'tasks.sleeptask',            'id': '49661b9a-aa22-4120-94b7-9ee8031d219d',            'args': '[2]',            'kwargs': '{}'}}]}].. note::    These are tasks with an ETA/countdown argument, not periodic tasks... _worker-inspect-reserved:Dump of reserved tasks----------------------Reserved tasks are tasks that have been received, but are still waiting to beexecuted.You can get a list of these using:meth:`~@control.inspect.reserved`:.. code-block:: pycon    >>> i.reserved()    [{'worker1.example.com':        [{'name': 'tasks.sleeptask',          'id': '32666e9b-809c-41fa-8e93-5ae0c80afbbf',          'args': '(8,)',          'kwargs': '{}'}]}].. _worker-statistics:Statistics----------The remote control command ``inspect stats`` (or:meth:`~@control.inspect.stats`) will give you a long list of useful (or notso useful) statistics about the worker:.. code-block:: console    $ celery -A proj inspect statsThe output will include the following fields:- ``broker``    Section for broker information.    * ``connect_timeout``        Timeout in seconds (int/float) for establishing a new connection.    * ``heartbeat``        Current heartbeat value (set by client).    * ``hostname``        Node name of the remote broker.    * ``insist``        No longer used.    * ``login_method``        Login method used to connect to the broker.    * ``port``        Port of the remote broker.    * ``ssl``        SSL enabled/disabled.    * ``transport``        Name of transport used (e.g., ``amqp`` or ``redis``)    * ``transport_options``        Options passed to transport.    * ``uri_prefix``        Some transports expects the host name to be a URL.        .. code-block:: text            redis+socket:///tmp/redis.sock        In this example the URI-prefix will be ``redis``.    * ``userid``        User id used to connect to the broker with.    * ``virtual_host``        Virtual host used.- ``clock``    Value of the workers logical clock. This is a positive integer and should    be increasing every time you receive statistics.- ``pid``    Process id of the worker instance (Main process).- ``pool``    Pool-specific section.    * ``max-concurrency``        Max number of processes/threads/green threads.    * ``max-tasks-per-child``        Max number of tasks a thread may execute before being recycled.    * ``processes``        List of PIDs (or thread-id's).    * ``put-guarded-by-semaphore``        Internal    * ``timeouts``        Default values for time limits.    * ``writes``        Specific to the prefork pool, this shows the distribution of writes        to each process in the pool when using async I/O.- ``prefetch_count``    Current prefetch count value for the task consumer.- ``rusage``    System usage statistics. The fields available may be different    on your platform.    From :manpage:`getrusage(2)`:    * ``stime``        Time spent in operating system code on behalf of this process.    * ``utime``        Time spent executing user instructions.    * ``maxrss``        The maximum resident size used by this process (in kilobytes).    * ``idrss``        Amount of non-shared memory used for data (in kilobytes times ticks of        execution)    * ``isrss``        Amount of non-shared memory used for stack space (in kilobytes times        ticks of execution)    * ``ixrss``        Amount of memory shared with other processes (in kilobytes times        ticks of execution).    * ``inblock``        Number of times the file system had to read from the disk on behalf of        this process.    * ``oublock``        Number of times the file system has to write to disk on behalf of        this process.    * ``majflt``        Number of page faults that were serviced by doing I/O.    * ``minflt``        Number of page faults that were serviced without doing I/O.    * ``msgrcv``        Number of IPC messages received.    * ``msgsnd``        Number of IPC messages sent.    * ``nvcsw``        Number of times this process voluntarily invoked a context switch.    * ``nivcsw``        Number of times an involuntary context switch took place.    * ``nsignals``        Number of signals received.    * ``nswap``        The number of times this process was swapped entirely out of memory.- ``total``    Map of task names and the total number of tasks with that type    the worker has accepted since start-up.Additional Commands===================.. control:: shutdownRemote shutdown---------------This command will gracefully shut down the worker remotely:.. code-block:: pycon    >>> app.control.broadcast('shutdown') # shutdown all workers    >>> app.control.broadcast('shutdown', destination='worker1@example.com').. control:: pingPing----This command requests a ping from alive workers.The workers reply with the string 'pong', and that's just about it.It will use the default one second timeout for replies unless you specifya custom timeout:.. code-block:: pycon    >>> app.control.ping(timeout=0.5)    [{'worker1.example.com': 'pong'},     {'worker2.example.com': 'pong'},     {'worker3.example.com': 'pong'}]:meth:`~@control.ping` also supports the `destination` argument,so you can specify the workers to ping:.. code-block:: pycon    >>> ping(['worker2.example.com', 'worker3.example.com'])    [{'worker2.example.com': 'pong'},     {'worker3.example.com': 'pong'}].. _worker-enable-events:.. control:: enable_events.. control:: disable_eventsEnable/disable events---------------------You can enable/disable events by using the `enable_events`,`disable_events` commands. This is useful to temporarily monitora worker using :program:`celery events`/:program:`celerymon`... code-block:: pycon    >>> app.control.enable_events()    >>> app.control.disable_events().. _worker-custom-control-commands:Writing your own remote control commands========================================There are two types of remote control commands:- Inspect command    Does not have side effects, will usually just return some value    found in the worker, like the list of currently registered tasks,    the list of active tasks, etc.- Control command    Performs side effects, like adding a new queue to consume from.Remote control commands are registered in the control panel andthey take a single argument: the current:class:`~celery.worker.control.ControlDispatch` instance.From there you have access to the active:class:`~celery.worker.consumer.Consumer` if needed.Here's an example control command that increments the task prefetch count:.. code-block:: python    from celery.worker.control import control_command    @control_command(        args=[('n', int)],        signature='[N=1]',  # <- used for help on the command-line.    )    def increase_prefetch_count(state, n=1):        state.consumer.qos.increment_eventually(n)        return {'ok': 'prefetch count incremented'}Make sure you add this code to a module that is imported by the worker:this could be the same module as where your Celery app is defined, or youcan add the module to the :setting:`imports` setting.Restart the worker so that the control command is registered, and now youcan call your command using the :program:`celery control` utility:.. code-block:: console    $ celery -A proj control increase_prefetch_count 3You can also add actions to the :program:`celery inspect` program,for example one that reads the current prefetch count:.. code-block:: python    from celery.worker.control import inspect_command    @inspect_command    def current_prefetch_count(state):        return {'prefetch_count': state.consumer.qos.value}After restarting the worker you can now query this value using the:program:`celery inspect` program:.. code-block:: console    $ celery -A proj inspect current_prefetch_count
 |