.. _whatsnew-3.0: =========================================== What's new in Celery 3.0 (Chiastic Slide) =========================================== Celery is a simple, flexible and reliable distributed system to process vast amounts of messages, while providing operations with the tools required to maintain such a system. It's a task queue with focus on real-time processing, while also supporting task scheduling. Celery has a large and diverse community of users and contributors, you should come join us :ref:`on IRC ` or :ref:`our mailing-list `. To read more about Celery you should go read the :ref:`introduction `. While this version is backward compatible with previous versions it's important that you read the following section. If you use Celery in combination with Django you must also read the `django-celery changelog`_ and upgrade to `django-celery 3.0`_. This version is officially supported on CPython 2.5, 2.6, 2.7, 3.2 and 3.3, as well as PyPy and Jython. Highlights ========== .. topic:: Overview - A new and improved API, that is both simpler and more powerful. Everyone must read the new :ref:`first-steps` tutorial, and the new :ref:`next-steps` tutorial. Oh, and why not reread the user guide while you're at it :) There are no current plans to deprecate the old API, so you don't have to be in a hurry to port your applications. - The worker is now thread-less, giving great performance improvements. - The new "Canvas" makes it easy to define complex work-flows. Ever wanted to chain tasks together? This is possible, but not just that, now you can even chain together groups and chords, or even combine multiple chains. Read more in the :ref:`Canvas ` user guide. - All of Celery's command-line programs are now available from a single :program:`celery` umbrella command. - This is the last version to support Python 2.5. Starting with Celery 3.1, Python 2.6 or later is required. - Support for the new :pypi:`librabbitmq` C client. Celery will automatically use the :pypi:`librabbitmq` module if installed, which is a very fast and memory-optimized replacement for the :pypi:`amqp` module. - Redis support is more reliable with improved ack emulation. - Celery now always uses UTC - Over 600 commits, 30k additions/36k deletions. In comparison 1.0➝ 2.0 had 18k additions/8k deletions. .. _`website`: http://celeryproject.org/ .. _`django-celery changelog`: https://github.com/celery/django-celery/tree/master/Changelog .. _`django-celery 3.0`: http://pypi.python.org/pypi/django-celery/ .. contents:: :local: :depth: 2 .. _v300-important: Important Notes =============== Broadcast exchanges renamed --------------------------- The workers remote control command exchanges has been renamed (a new :term:`pidbox` name), this is because the ``auto_delete`` flag on the exchanges has been removed, and that makes it incompatible with earlier versions. You can manually delete the old exchanges if you want, using the :program:`celery amqp` command (previously called ``camqadm``): .. code-block:: console $ celery amqp exchange.delete celeryd.pidbox $ celery amqp exchange.delete reply.celeryd.pidbox Event-loop ---------- The worker is now running *without threads* when used with RabbitMQ (AMQP), or Redis as a broker, resulting in: - Much better overall performance. - Fixes several edge case race conditions. - Sub-millisecond timer precision. - Faster shutdown times. The transports supported are: ``py-amqp`` ``librabbitmq``, ``redis``, and ``amqplib``. Hopefully this can be extended to include additional broker transports in the future. For increased reliability the :setting:`CELERY_FORCE_EXECV` setting is enabled by default if the event-loop is not used. New ``celery`` umbrella command ------------------------------- All Celery's command-line programs are now available from a single :program:`celery` umbrella command. You can see a list of sub-commands and options by running: .. code-block:: console $ celery help Commands include: - ``celery worker`` (previously ``celeryd``). - ``celery beat`` (previously ``celerybeat``). - ``celery amqp`` (previously ``camqadm``). The old programs are still available (``celeryd``, ``celerybeat``, etc), but you are discouraged from using them. Now depends on :pypi:`billiard`. -------------------------------- Billiard is a fork of the multiprocessing containing the no-execv patch by ``sbt`` (http://bugs.python.org/issue8713), and also contains the pool improvements previously located in Celery. This fork was necessary as changes to the C extension code was required for the no-execv patch to work. - Issue #625 - Issue #627 - Issue #640 - `django-celery #122 >> from celery import chain # (2 + 2) * 8 / 2 >>> res = chain(add.subtask((2, 2)), mul.subtask((8,)), div.subtask((2,))).apply_async() >>> res.get() == 16 >>> res.parent.get() == 32 >>> res.parent.parent.get() == 4 - Adds :meth:`AsyncResult.get_leaf` Waits and returns the result of the leaf subtask. That is the last node found when traversing the graph, but this means that the graph can be 1-dimensional only (in effect a list). - Adds ``subtask.link(subtask)`` + ``subtask.link_error(subtask)`` Shortcut to ``s.options.setdefault('link', []).append(subtask)`` - Adds ``subtask.flatten_links()`` Returns a flattened list of all dependencies (recursively) Redis: Priority support. ------------------------ The message's ``priority`` field is now respected by the Redis transport by having multiple lists for each named queue. The queues are then consumed by in order of priority. The priority field is a number in the range of 0 - 9, where 0 is the default and highest priority. The priority range is collapsed into four steps by default, since it is unlikely that nine steps will yield more benefit than using four steps. The number of steps can be configured by setting the ``priority_steps`` transport option, which must be a list of numbers in **sorted order**: .. code-block:: pycon >>> BROKER_TRANSPORT_OPTIONS = { ... 'priority_steps': [0, 2, 4, 6, 8, 9], ... } Priorities implemented in this way is not as reliable as priorities on the server side, which is why the feature is nicknamed "quasi-priorities"; **Using routing is still the suggested way of ensuring quality of service**, as client implemented priorities fall short in a number of ways, e.g. if the worker is busy with long running tasks, has prefetched many messages, or the queues are congested. Still, it is possible that using priorities in combination with routing can be more beneficial than using routing or priorities alone. Experimentation and monitoring should be used to prove this. Contributed by Germán M. Bravo. Redis: Now cycles queues so that consuming is fair. --------------------------------------------------- This ensures that a very busy queue won't block messages from other queues, and ensures that all queues have an equal chance of being consumed from. This used to be the case before, but the behavior was accidentally changed while switching to using blocking pop. `group`/`chord`/`chain` are now subtasks ---------------------------------------- - group is no longer an alias to ``TaskSet``, but new all together, since it was very difficult to migrate the ``TaskSet`` class to become a subtask. - A new shortcut has been added to tasks: .. code-block:: pycon >>> task.s(arg1, arg2, kw=1) as a shortcut to: .. code-block:: pycon >>> task.subtask((arg1, arg2), {'kw': 1}) - Tasks can be chained by using the ``|`` operator: .. code-block:: pycon >>> (add.s(2, 2), pow.s(2)).apply_async() - Subtasks can be "evaluated" using the ``~`` operator: .. code-block:: pycon >>> ~add.s(2, 2) 4 >>> ~(add.s(2, 2) | pow.s(2)) is the same as: .. code-block:: pycon >>> chain(add.s(2, 2), pow.s(2)).apply_async().get() - A new subtask_type key has been added to the subtask dictionary. This can be the string ``"chord"``, ``"group"``, ``"chain"``, ``"chunks"``, ``"xmap"``, or ``"xstarmap"``. - maybe_subtask now uses subtask_type to reconstruct the object, to be used when using non-pickle serializers. - The logic for these operations have been moved to dedicated tasks celery.chord, celery.chain and celery.group. - subtask no longer inherits from AttributeDict. It's now a pure dict subclass with properties for attribute access to the relevant keys. - The repr's now outputs how the sequence would like imperatively: .. code-block:: pycon >>> from celery import chord >>> (chord([add.s(i, i) for i in xrange(10)], xsum.s()) | pow.s(2)) tasks.xsum([tasks.add(0, 0), tasks.add(1, 1), tasks.add(2, 2), tasks.add(3, 3), tasks.add(4, 4), tasks.add(5, 5), tasks.add(6, 6), tasks.add(7, 7), tasks.add(8, 8), tasks.add(9, 9)]) | tasks.pow(2) New remote control commands --------------------------- These commands were previously experimental, but they have proven stable and is now documented as part of the official API. - :control:`add_consumer`/:control:`cancel_consumer` Tells workers to consume from a new queue, or cancel consuming from a queue. This command has also been changed so that the worker remembers the queues added, so that the change will persist even if the connection is re-connected. These commands are available programmatically as :meth:`@control.add_consumer` / :meth:`@control.cancel_consumer`: .. code-block:: pycon >>> celery.control.add_consumer(queue_name, ... destination=['w1.example.com']) >>> celery.control.cancel_consumer(queue_name, ... destination=['w1.example.com']) or using the :program:`celery control` command: .. code-block:: console $ celery control -d w1.example.com add_consumer queue $ celery control -d w1.example.com cancel_consumer queue .. note:: Remember that a control command without *destination* will be sent to **all workers**. - ``autoscale`` Tells workers with ``--autoscale`` enabled to change autoscale max/min concurrency settings. This command is available programmatically as ``control.autoscale``: .. code-block:: pycon >>> celery.control.autoscale(max=10, min=5, ... destination=['w1.example.com']) or using the :program:`celery control` command: .. code-block:: console $ celery control -d w1.example.com autoscale 10 5 - :control:`pool_grow`/:control:`pool_shrink` Tells workers to add or remove pool processes. These commands are available programmatically as :meth:`@control.pool_grow` / :meth:`@control.pool_shrink`: .. code-block:: pycon >>> celery.control.pool_grow(2, destination=['w1.example.com']) >>> celery.contorl.pool_shrink(2, destination=['w1.example.com']) or using the :program:`celery control` command: .. code-block:: console $ celery control -d w1.example.com pool_grow 2 $ celery control -d w1.example.com pool_shrink 2 - :program:`celery control` now supports :control:`rate_limit` and :control:`time_limit` commands. See ``celery control --help`` for details. Crontab now supports Day of Month, and Month of Year arguments -------------------------------------------------------------- See the updated list of examples at :ref:`beat-crontab`. Immutable subtasks ------------------ ``subtask``'s can now be immutable, which means that the arguments will not be modified when calling callbacks: .. code-block:: pycon >>> chain(add.s(2, 2), clear_static_electricity.si()) means it will not receive the argument of the parent task, and ``.si()`` is a shortcut to: .. code-block:: pycon >>> clear_static_electricity.subtask(immutable=True) Logging Improvements -------------------- Logging support now conforms better with best practices. - Classes used by the worker no longer uses app.get_default_logger, but uses `celery.utils.log.get_logger` which simply gets the logger not setting the level, and adds a NullHandler. - Loggers are no longer passed around, instead every module using logging defines a module global logger that is used throughout. - All loggers inherit from a common logger called "celery". - Before ``task.get_logger`` would setup a new logger for every task, and even set the log level. This is no longer the case. - Instead all task loggers now inherit from a common "celery.task" logger that is set up when programs call `setup_logging_subsystem`. - Instead of using LoggerAdapter to augment the formatter with the task_id and task_name field, the task base logger now use a special formatter adding these values at run-time from the currently executing task. - In fact, ``task.get_logger`` is no longer recommended, it is better to add a module-level logger to your tasks module. For example, like this: .. code-block:: python from celery.utils.log import get_task_logger logger = get_task_logger(__name__) @celery.task def add(x, y): logger.debug('Adding %r + %r' % (x, y)) return x + y The resulting logger will then inherit from the ``"celery.task"`` logger so that the current task name and id is included in logging output. - Redirected output from stdout/stderr is now logged to a "celery.redirected" logger. - In addition a few warnings.warn have been replaced with logger.warn. - Now avoids the 'no handlers for logger multiprocessing' warning Task registry no longer global ------------------------------ Every Celery instance now has its own task registry. You can make apps share registries by specifying it: .. code-block:: pycon >>> app1 = Celery() >>> app2 = Celery(tasks=app1.tasks) Note that tasks are shared between registries by default, so that tasks will be added to every subsequently created task registry. As an alternative tasks can be private to specific task registries by setting the ``shared`` argument to the ``@task`` decorator: .. code-block:: python @celery.task(shared=False) def add(x, y): return x + y Abstract tasks are now lazily bound. ------------------------------------ The :class:`~celery.task.Task` class is no longer bound to an app by default, it will first be bound (and configured) when a concrete subclass is created. This means that you can safely import and make task base classes, without also initializing the app environment: .. code-block:: python from celery.task import Task class DebugTask(Task): abstract = True def __call__(self, *args, **kwargs): print('CALLING %r' % (self,)) return self.run(*args, **kwargs) .. code-block:: pycon >>> DebugTask >>> @celery1.task(base=DebugTask) ... def add(x, y): ... return x + y >>> add.__class__ > Lazy task decorators -------------------- The ``@task`` decorator is now lazy when used with custom apps. That is, if ``accept_magic_kwargs`` is enabled (her by called "compat mode"), the task decorator executes inline like before, however for custom apps the @task decorator now returns a special PromiseProxy object that is only evaluated on access. All promises will be evaluated when :meth:`@finalize` is called, or implicitly when the task registry is first used. Smart `--app` option -------------------- The :option:`--app ` option now 'auto-detects' - If the provided path is a module it tries to get an attribute named 'celery'. - If the provided path is a package it tries to import a sub module named celery', and get the celery attribute from that module. E.g. if you have a project named ``proj`` where the celery app is located in ``from proj.celery import app``, then the following will be equivalent: .. code-block:: console $ celery worker --app=proj $ celery worker --app=proj.celery: $ celery worker --app=proj.celery:app In Other News ------------- - New :setting:`CELERYD_WORKER_LOST_WAIT` to control the timeout in seconds before :exc:`billiard.WorkerLostError` is raised when a worker can not be signaled (Issue #595). Contributed by Brendon Crawford. - Redis event monitor queues are now automatically deleted (Issue #436). - App instance factory methods have been converted to be cached descriptors that creates a new subclass on access. This means that e.g. ``app.Worker`` is an actual class and will work as expected when: .. code-block:: python class Worker(app.Worker): ... - New signal: :signal:`task_success`. - Multiprocessing logs are now only emitted if the :envvar:`MP_LOG` environment variable is set. - The Celery instance can now be created with a broker URL .. code-block:: python app = Celery(broker='redis://') - Result backends can now be set using a URL Currently only supported by redis. Example use: .. code-block:: python CELERY_RESULT_BACKEND = 'redis://localhost/1' - Heartbeat frequency now every 5s, and frequency sent with event The heartbeat frequency is now available in the worker event messages, so that clients can decide when to consider workers offline based on this value. - Module celery.actors has been removed, and will be part of cl instead. - Introduces new ``celery`` command, which is an entry-point for all other commands. The main for this command can be run by calling ``celery.start()``. - Annotations now supports decorators if the key starts with '@'. E.g.: .. code-block:: python def debug_args(fun): @wraps(fun) def _inner(*args, **kwargs): print('ARGS: %r' % (args,)) return _inner CELERY_ANNOTATIONS = { 'tasks.add': {'@__call__': debug_args}, } Also tasks are now always bound by class so that annotated methods end up being bound. - Bug-report now available as a command and broadcast command - Get it from a Python REPL: .. code-block:: pycon >>> import celery >>> print(celery.bugreport()) - Using the ``celery`` command line program: .. code-block:: console $ celery report - Get it from remote workers: .. code-block:: console $ celery inspect report - Module ``celery.log`` moved to :mod:`celery.app.log`. - Module ``celery.task.control`` moved to :mod:`celery.app.control`. - New signal: :signal:`task_revoked` Sent in the main process when the task is revoked or terminated. - ``AsyncResult.task_id`` renamed to ``AsyncResult.id`` - ``TasksetResult.taskset_id`` renamed to ``.id`` - ``xmap(task, sequence)`` and ``xstarmap(task, sequence)`` Returns a list of the results applying the task function to every item in the sequence. Example: .. code-block:: pycon >>> from celery import xstarmap >>> xstarmap(add, zip(range(10), range(10)).apply_async() [0, 2, 4, 6, 8, 10, 12, 14, 16, 18] - ``chunks(task, sequence, chunksize)`` - ``group.skew(start=, stop=, step=)`` Skew will skew the countdown for the individual tasks in a group, e.g. with a group: .. code-block:: pycon >>> g = group(add.s(i, i) for i in xrange(10)) Skewing the tasks from 0 seconds to 10 seconds: .. code-block:: pycon >>> g.skew(stop=10) Will have the first task execute in 0 seconds, the second in 1 second, the third in 2 seconds and so on. - 99% test Coverage - :setting:`CELERY_QUEUES` can now be a list/tuple of :class:`~kombu.Queue` instances. Internally :attr:`@amqp.queues` is now a mapping of name/Queue instances, instead of converting on the fly. - Can now specify connection for :class:`@control.inspect`. .. code-block:: python from kombu import Connection i = celery.control.inspect(connection=Connection('redis://')) i.active_queues() - :setting:`CELERY_FORCE_EXECV` is now enabled by default. If the old behavior is wanted the setting can be set to False, or the new :option:`celery worker --no-execv` option. - Deprecated module ``celery.conf`` has been removed. - The :setting:`CELERY_TIMEZONE` now always require the :pypi:`pytz` library to be installed (except if the timezone is set to `UTC`). - The Tokyo Tyrant backend has been removed and is no longer supported. - Now uses :func:`~kombu.common.maybe_declare` to cache queue declarations. - There is no longer a global default for the :setting:`CELERYBEAT_MAX_LOOP_INTERVAL` setting, it is instead set by individual schedulers. - Worker: now truncates very long message bodies in error reports. - No longer deep-copies exceptions when trying to serialize errors. - :envvar:`CELERY_BENCH` environment variable, will now also list memory usage statistics at worker shutdown. - Worker: now only ever use a single timer for all timing needs, and instead set different priorities. - An exceptions arguments are now safely pickled Contributed by Matt Long. - Worker/Beat no longer logs the start-up banner. Previously it would be logged with severity warning, now it's only written to stdout. - The ``contrib/`` directory in the distribution has been renamed to ``extra/``. - New signal: :signal:`task_revoked` - :mod:`celery.contrib.migrate`: Many improvements including filtering, queue migration, and support for acking messages on the broker migrating from. Contributed by John Watson. - Worker: Prefetch count increments are now optimized and grouped together. - Worker: No longer calls ``consume`` on the remote control command queue twice. Probably didn't cause any problems, but was unnecessary. Internals --------- - ``app.broker_connection`` is now ``app.connection`` Both names still work. - Compatibility modules are now generated dynamically upon use. These modules are ``celery.messaging``, ``celery.log``, ``celery.decorators`` and ``celery.registry``. - :mod:`celery.utils` refactored into multiple modules: :mod:`celery.utils.text` :mod:`celery.utils.imports` :mod:`celery.utils.functional` - Now using :mod:`kombu.utils.encoding` instead of :mod:`celery.utils.encoding`. - Renamed module ``celery.routes`` -> :mod:`celery.app.routes`. - Renamed package ``celery.db`` -> :mod:`celery.backends.database`. - Renamed module ``celery.abstract`` -> :mod:`celery.worker.bootsteps`. - Command line docs are now parsed from the module docstrings. - Test suite directory has been reorganized. - :program:`setup.py` now reads docs from the :file:`requirements/` directory. - Celery commands no longer wraps output (Issue #700). Contributed by Thomas Johansson. .. _v300-experimental: Experimental ============ :mod:`celery.contrib.methods`: Task decorator for methods ---------------------------------------------------------- This is an experimental module containing a task decorator, and a task decorator filter, that can be used to create tasks out of methods:: from celery.contrib.methods import task_method class Counter(object): def __init__(self): self.value = 1 @celery.task(name='Counter.increment', filter=task_method) def increment(self, n=1): self.value += 1 return self.value See :mod:`celery.contrib.methods` for more information. .. _v300-unscheduled-removals: Unscheduled Removals ==================== Usually we don't make backward incompatible removals, but these removals should have no major effect. - The following settings have been renamed: - ``CELERYD_ETA_SCHEDULER`` -> ``CELERYD_TIMER`` - ``CELERYD_ETA_SCHEDULER_PRECISION`` -> ``CELERYD_TIMER_PRECISION`` .. _v300-deprecations: Deprecation Time-line Changes ============================= See the :ref:`deprecation-timeline`. - The ``celery.backends.pyredis`` compat module has been removed. Use :mod:`celery.backends.redis` instead! - The following undocumented API's has been moved: - ``control.inspect.add_consumer`` -> :meth:`@control.add_consumer`. - ``control.inspect.cancel_consumer`` -> :meth:`@control.cancel_consumer`. - ``control.inspect.enable_events`` -> :meth:`@control.enable_events`. - ``control.inspect.disable_events`` -> :meth:`@control.disable_events`. This way ``inspect()`` is only used for commands that do not modify anything, while idempotent control commands that make changes are on the control objects. Fixes ===== - Retry SQLAlchemy backend operations on DatabaseError/OperationalError (Issue #634) - Tasks that called ``retry`` was not acknowledged if acks late was enabled Fix contributed by David Markey. - The message priority argument was not properly propagated to Kombu (Issue #708). Fix contributed by Eran Rundstein