|
@@ -1,6 +1,5 @@
|
|
|
from carrot.connection import DjangoAMQPConnection
|
|
|
from celery.log import setup_logger
|
|
|
-from celery.conf import TASK_META_USE_DB
|
|
|
from celery.registry import tasks
|
|
|
from celery.messaging import TaskPublisher, TaskConsumer
|
|
|
from celery.models import TaskMeta
|
|
@@ -17,8 +16,6 @@ import pickle
|
|
|
def delay_task(task_name, *args, **kwargs):
|
|
|
"""Delay a task for execution by the ``celery`` daemon.
|
|
|
|
|
|
- Examples
|
|
|
- --------
|
|
|
>>> delay_task("update_record", name="George Constanza", age=32)
|
|
|
|
|
|
"""
|
|
@@ -70,10 +67,6 @@ class Task(object):
|
|
|
it also has to define the ``run`` method, which is the actual method the
|
|
|
``celery`` daemon executes.
|
|
|
|
|
|
-
|
|
|
- Examples
|
|
|
- --------
|
|
|
-
|
|
|
This is a simple task just logging a message,
|
|
|
|
|
|
>>> from celery.task import tasks, Task
|
|
@@ -151,9 +144,6 @@ class TaskSet(object):
|
|
|
"""A task containing several subtasks, making it possible
|
|
|
to track how many, or when all of the tasks are completed.
|
|
|
|
|
|
- Example Usage
|
|
|
- --------------
|
|
|
-
|
|
|
>>> from djangofeeds.tasks import RefreshFeedTask
|
|
|
>>> taskset = TaskSet(RefreshFeedTask, args=[
|
|
|
... {"feed_url": "http://cnn.com/rss"},
|
|
@@ -184,8 +174,6 @@ class TaskSet(object):
|
|
|
|
|
|
Returns a tuple with the taskset id, and a list of subtask id's.
|
|
|
|
|
|
- Examples
|
|
|
- --------
|
|
|
>>> ts = RefreshFeeds([
|
|
|
... ["http://foo.com/rss", {}],
|
|
|
... ["http://bar.com/rss", {}],
|
|
@@ -213,45 +201,76 @@ class TaskSet(object):
|
|
|
return taskset_id, subtask_ids
|
|
|
|
|
|
def iterate(self):
|
|
|
+ """Iterate over the results returned after calling ``run()``.
|
|
|
+
|
|
|
+ If any of the tasks raises an exception, the exception will
|
|
|
+ be reraised by ``iterate``.
|
|
|
+ """
|
|
|
taskset_id, subtask_ids = self.run()
|
|
|
results = dict([(task_id, AsyncResult(task_id))
|
|
|
for task_id in subtask_ids])
|
|
|
while results:
|
|
|
- for pending_result in results:
|
|
|
+ for task_id, pending_result in results.items():
|
|
|
if pending_result.status == "DONE":
|
|
|
+ del(results[task_id])
|
|
|
yield pending_result.result
|
|
|
elif pending_result.status == "FAILURE":
|
|
|
raise pending_result.result
|
|
|
|
|
|
def join(self, timeout=None):
|
|
|
- timeout_timer = TimeOutTimer(timeout)
|
|
|
+ """Gather the results for all of the tasks in the taskset,
|
|
|
+ and return a list with them ordered by the order of which they
|
|
|
+ were called.
|
|
|
+
|
|
|
+ If any of the tasks raises an exception, the exception
|
|
|
+ will be reraised by ``join``.
|
|
|
+
|
|
|
+ If ``timeout`` is not ``None`` and the operation takes
|
|
|
+ longer than ``timeout`` seconds, it will raise
|
|
|
+ the :class:`celery.timer.TimeoutError` exception.
|
|
|
+
|
|
|
+ """
|
|
|
+ timeout_timer = TimeOutTimer(timeout) # Timeout timer starts here.
|
|
|
taskset_id, subtask_ids = self.run()
|
|
|
pending_results = map(AsyncResult, subtask_ids)
|
|
|
results = PositionQueue(length=len(subtask_ids))
|
|
|
|
|
|
while True:
|
|
|
- for i, pending_result in enumerate(pending_results):
|
|
|
+ for position, pending_result in enumerate(pending_results):
|
|
|
if pending_result.status == "DONE":
|
|
|
- results[i] = pending_result.result
|
|
|
+ results[position] = pending_result.result
|
|
|
elif pending_result.status == "FAILURE":
|
|
|
raise pending_result.result
|
|
|
- if results.is_full():
|
|
|
+ if results.full():
|
|
|
+ # Make list copy, so the returned type is not a position
|
|
|
+ # queue.
|
|
|
return list(results)
|
|
|
+
|
|
|
+ # This raises TimeoutError when timed out.
|
|
|
timeout_timer.tick()
|
|
|
|
|
|
@classmethod
|
|
|
def remote_execute(cls, func, args):
|
|
|
+ """Apply ``args`` to function by distributing the args to the
|
|
|
+ celery server(s)."""
|
|
|
pickled = pickle.dumps(func)
|
|
|
arguments = [[[pickled, arg, {}], {}] for arg in args]
|
|
|
return cls(ExecuteRemoteTask, arguments)
|
|
|
|
|
|
@classmethod
|
|
|
def map(cls, func, args, timeout=None):
|
|
|
+ """Distribute processing of the arguments and collect the results."""
|
|
|
remote_task = cls.remote_execute(func, args)
|
|
|
return remote_task.join(timeout=timeout)
|
|
|
|
|
|
@classmethod
|
|
|
def map_async(cls, func, args, timeout=None):
|
|
|
+ """Distribute processing of the arguments and collect the results
|
|
|
+ asynchronously.
|
|
|
+
|
|
|
+ Returns :class:`celery.result.AsyncResult` instance.
|
|
|
+
|
|
|
+ """
|
|
|
serfunc = pickle.dumps(func)
|
|
|
return AsynchronousMapTask.delay(serfunc, args, timeout=timeout)
|
|
|
|
|
@@ -259,9 +278,6 @@ class TaskSet(object):
|
|
|
def dmap(func, args, timeout=None):
|
|
|
"""Distribute processing of the arguments and collect the results.
|
|
|
|
|
|
- Example
|
|
|
- --------
|
|
|
-
|
|
|
>>> from celery.task import map
|
|
|
>>> import operator
|
|
|
>>> dmap(operator.add, [[2, 2], [4, 4], [8, 8]])
|
|
@@ -272,6 +288,7 @@ def dmap(func, args, timeout=None):
|
|
|
|
|
|
|
|
|
class AsynchronousMapTask(Task):
|
|
|
+ """Task used internally by ``dmap_async``."""
|
|
|
name = "celery.map_async"
|
|
|
|
|
|
def run(self, serfunc, args, **kwargs):
|
|
@@ -282,10 +299,9 @@ tasks.register(AsynchronousMapTask)
|
|
|
|
|
|
def dmap_async(func, args, timeout=None):
|
|
|
"""Distribute processing of the arguments and collect the results
|
|
|
- asynchronously. Returns a :class:`AsyncResult` object.
|
|
|
-
|
|
|
- Example
|
|
|
- --------
|
|
|
+ asynchronously.
|
|
|
+
|
|
|
+ Returns a :class:`celery.result.AsyncResult` object.
|
|
|
|
|
|
>>> from celery.task import dmap_async
|
|
|
>>> import operator
|
|
@@ -310,9 +326,6 @@ class PeriodicTask(Task):
|
|
|
|
|
|
You have to register the periodic task in the task registry.
|
|
|
|
|
|
- Examples
|
|
|
- --------
|
|
|
-
|
|
|
>>> from celery.task import tasks, PeriodicTask
|
|
|
>>> from datetime import timedelta
|
|
|
>>> class MyPeriodicTask(PeriodicTask):
|
|
@@ -340,17 +353,30 @@ class PeriodicTask(Task):
|
|
|
super(PeriodicTask, self).__init__()
|
|
|
|
|
|
|
|
|
-
|
|
|
class ExecuteRemoteTask(Task):
|
|
|
+ """Execute arbitrary function/object.
|
|
|
+
|
|
|
+ The object must be pickleable, so you can't use lambdas or functions
|
|
|
+ defined in the REPL.
|
|
|
+
|
|
|
+ """
|
|
|
name = "celery.execute_remote"
|
|
|
|
|
|
def run(self, ser_callable, fargs, fkwargs, **kwargs):
|
|
|
+ """Execute the pickled ``ser_callable``, with ``fargs`` as positional
|
|
|
+ arguments and ``fkwargs`` as keyword arguments."""
|
|
|
callable_ = pickle.loads(ser_callable)
|
|
|
return callable_(*fargs, **fkwargs)
|
|
|
tasks.register(ExecuteRemoteTask)
|
|
|
|
|
|
|
|
|
def execute_remote(func, *args, **kwargs):
|
|
|
+ """Execute arbitrary function/object remotely.
|
|
|
+
|
|
|
+ The object must be picklable, so you can't use lambdas or functions
|
|
|
+ defined in the REPL (the objects must have an associated module).
|
|
|
+
|
|
|
+ """
|
|
|
return ExecuteRemoteTask.delay(pickle.dumps(func), args, kwargs)
|
|
|
|
|
|
|