Prechádzať zdrojové kódy

Writing on the next-steps tutorial

Ask Solem 13 rokov pred
rodič
commit
5a22319a92

+ 409 - 12
docs/getting-started/next-steps.rst

@@ -6,6 +6,9 @@ The :ref:`first-steps` guide is intentionally minimal.  In this guide
 we will demonstrate what Celery offers in more detail, including
 we will demonstrate what Celery offers in more detail, including
 how to add Celery support for your application and library.
 how to add Celery support for your application and library.
 
 
+.. contents::
+    :local:
+
 
 
 Our Project
 Our Project
 ===========
 ===========
@@ -17,38 +20,218 @@ Project layout::
         /tasks.py
         /tasks.py
 
 
 :file:`proj/celery.py`
 :file:`proj/celery.py`
+----------------------
 
 
 .. literalinclude:: ../../examples/next-steps/proj/celery.py
 .. literalinclude:: ../../examples/next-steps/proj/celery.py
-    :language python:
+    :language: python
+
+In this module we created our :class:`@Celery` instance.  This is something
+referred to as the celery *app*.  Your project
+imports celery from this module to access Celery's features.
+It's possible to use several app instances at once, but that
+will not be covered in this tutorial.
+
+- The ``broker`` argument specifies the URL of the broker to use.
+
+    See :ref:`celerytut-broker` for more information.
+
+- The ``backend`` argument specifies the result backend to use,
 
 
+    It's used to keep track of task state and results.
+    While results are disabled by default we use the amqp backend here
+    to demonstrate how retrieving the results work, you may want to use
+    a different backend for your application, as they all have different
+    strenghts and weaknesses.  If you don't need results it's best
+    to disable them.  Results can also be disabled for individual tasks
+    by setting the ``@task(ignore_result=True)`` option.
+
+    See :ref:`celerytut-keeping-results` for more information.
+
+- The ``include`` argument is a list of modules to import when
+  the worker starts.  We need to add our tasks module here so
+  that the worker is able to find our tasks.
 
 
 :file:`proj/tasks.py`
 :file:`proj/tasks.py`
+---------------------
 
 
 .. literalinclude:: ../../examples/next-steps/proj/tasks.py
 .. literalinclude:: ../../examples/next-steps/proj/tasks.py
-    :language python:
+    :language: python
+
+
+Starting the worker
+===================
 
 
+The :program:`celery` program can be used to start the worker::
+
+   $ celery worker --app=proj -l info
+
+The :option:`--app` argument specifies the Celery app instance to use,
+it must be in the form of ``module.path:celery``, where the part before the colon
+is the name of the module, and the attribute name comes last.
+If a package name is specified instead it will automatically
+try to find a ``celery`` module in that package, and if the name
+is a module it will try to find a ``celery`` attribute in that module.
+This means that the following all results in the same::
+
+    $ celery --app=proj
+    $ celery --app=proj.celery:
+    $ celery --app=proj.celery:celery
 
 
 
 
 Subtasks
 Subtasks
 ========
 ========
 
 
+A :func:`~celery.subtask` wraps the signature of a single task invocation:
+arguments, keyword arguments and execution options.
 
 
-group
------
+A subtask for the ``add`` task can be created like this::
 
 
-.. code-block:: python
+    >>> from celery import subtask
+    >>> subtask(add.name, args=(4, 4))
+
+or you can create one from the task itself::
+
+    >>> from proj.tasks import add
+    >>> add.subtask(args=(4, 4))
+
+It takes the same arguments as the :meth:`~@Task.apply_async` method::
+
+    >>> add.apply_async(args, kwargs, **options)
+    >>> add.subtask(args, kwargs, **options)
+
+    >>> add.apply_async((2, 2), countdown=1)
+    >>> add.subtask((2, 2), countdown=1)
+
+And like there is a :meth:`~@Task.delay` shortcut for `apply_async`
+there is a :meth:`~@Task.s` shortcut for subtask::
+
+    >>> add.s(*args, **kwargs)
+
+    >>> add.s(2, 2)
+    proj.tasks.add(2, 2)
+
+    >>> add.s(2, 2) == add.subtask((2, 2))
+    True
+
+You can't define options with :meth:`~@Task.s`, but a chaining
+``set`` call takes care of that::
+
+    >>> add.s(2, 2).set(countdown=1)
+    proj.tasks.add(2, 2)
+
+Partials
+--------
+
+A subtask can be applied too::
+
+    >>> add.s(2, 2).delay()
+    >>> add.s(2, 2).apply_async(countdown=1)
+
+Specifying additional args, kwargs or options to ``apply_async``/``delay``
+creates partials:
+
+- Any arguments added will be prepended to the args in the signature::
+
+    >>> partial = add.s(2)          # incomplete signature
+    >>> partial.delay(4)            # 2 + 4
+    >>> partial.apply_async((4, ))  # same
+
+- Any keyword arguments added will be merged with the kwargs in the signature,
+  with the new keyword arguments taking precedence::
+
+    >>> s = add.s(2, 2)
+    >>> s.delay(debug=True)                    # -> add(2, 2, debug=True)
+    >>> s.apply_async(kwargs={"debug": True})  # same
+
+- Any options added will be merged with the options in the signature,
+  with the new options taking precedence::
+
+    >>> s = add.subtask((2, 2), countdown=10)
+    >>> s.apply_async(countdown=1)  # countdown is now 1
+
+You can also clone subtasks to augment these::
+
+    >>> s = add.s(2)
+    proj.tasks.add(2)
+
+    >>> s.clone(args=(4, ), kwargs={"debug": True})
+    proj.tasks.add(2, 4, debug=True)
+
+Partials are meant to be used with callbacks, any tasks linked or chord
+callbacks will be applied with the result of the parent task.
+Sometimes you want to specify a callback that does not take
+additional arguments, and in that case you can set the subtask
+to be immutable::
+
+    >>> add.s(2, 2).link( reset_buffers.subtask(immutable=True) )
+
+Only the execution options can be set when a subtask is immutable,
+and it's not possible to apply the subtask with partial args/kwargs.
+
+.. note::
+
+    In this tutorial we use the prefix operator `~` to subtasks.
+    You probably shouldn't use it in your production code, but it's a handy shortcut
+    when testing with the Python shell::
+
+        >>> ~subtask
+
+        >>> # is the same as
+        >>> subtask.delay().get()
+
+Groups
+------
+
+A group can be used to execute several tasks in parallel.
+
+The :class:`~celery.group` function takes a list of subtasks::
 
 
     >>> from celery import group
     >>> from celery import group
     >>> from proj.tasks import add
     >>> from proj.tasks import add
 
 
-    >>> ~group(add.s(i, i) for i in xrange(10))
-    [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
+    >>> group(add.s(2, 2), add.s(4, 4))
+    (proj.tasks.add(2, 2), proj.tasks.add(4, 4))
+
+If you **call** the group, the tasks will be applied
+one after one in the current process, and a :class:`~@TaskSetResult`
+instance is returned which can be used to keep track of the results,
+or tell how many tasks are ready and so on::
+
+    >>> g = group(add.s(2, 2), add.s(4, 4))
+    >>> res = g()
+    >>> res.get()
+    [4, 8]
 
 
-    >>> group(add.s(i, i) for i in xrange(10)).skew(1, 10)
+However, if you call ``apply_async`` on the group it will
+send a special grouping task, so that the action of applying
+the tasks happens in a worker instead of the current process::
 
 
-map/starmap
+    >>> res = g.apply_async()
+    >>> res.get()
+    [4, 8]
+
+Group also supports iterators::
+
+    >>> group(add.s(i, i) for i in xrange(100))()
+
+
+A group is a subclass instance, so it can be used in combination
+with other subtasks.
+
+Map & Starmap
 -------------
 -------------
 
 
+:class:`~celery.map` and :class:`~celery.starmap` are built-in tasks
+that calls the task for every element in a sequence.
+
+They differ from group in that
+
+- only one task message is sent
+
+- the operation is sequential.
+
+For example using ``map``:
+
 .. code-block:: python
 .. code-block:: python
 
 
     >>> from proj.tasks import add
     >>> from proj.tasks import add
@@ -56,19 +239,233 @@ map/starmap
     >>> ~xsum.map([range(10), range(100)])
     >>> ~xsum.map([range(10), range(100)])
     [45, 4950]
     [45, 4950]
 
 
+is the same as having a task doing:
+
+.. code-block:: python
+
+    @celery.task
+    def temp():
+        return [xsum(range(10)), xsum(range(100))]
+
+and using ``starmap``::
+
     >>> ~add.starmap(zip(range(10), range(10)))
     >>> ~add.starmap(zip(range(10), range(10)))
     [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
     [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
 
 
+is the same as having a task doing:
+
+.. code-block:: python
+
+    @celery.task
+    def temp():
+        return [add(i, i) for i in range(10)]
+
+Both ``map`` and ``starmap`` are subtasks, so they can be used as
+other subtasks and combined in groups etc., for example
+to apply the starmap after 10 seconds::
+
     >>> add.starmap(zip(range(10), range(10))).apply_async(countdown=10)
     >>> add.starmap(zip(range(10), range(10))).apply_async(countdown=10)
 
 
-chunks
-------
+Chunking
+--------
+
+-- Chunking lets you divide a iterable of work into pieces,
+   so that if you have one million objects, you can create
+   10 tasks with hundred thousand objects each.
+
+Some may worry that chunking your tasks results in a degradation
+of parallelism, but this is rarely true for a busy cluster
+and in practice since you are avoiding the overhead  of messaging
+it may considerably increase performance.
+
+To create a chunks subtask you can use :meth:`@Task.chunks`:
+
+.. code-block:: python
+
+    >>> add.chunks(zip(range(100), range(100)), 10)
+
+As with :class:`~celery.group` the act of **calling**
+the chunks will apply the tasks in the current process:
 
 
 .. code-block:: python
 .. code-block:: python
 
 
     >>> from proj.tasks import add
     >>> from proj.tasks import add
 
 
-    >>> ~add.chunks(zip(range(100), range(100)), 10)
+    >>> res = add.chunks(zip(range(100), range(100)), 10)()
+    >>> res.get()
+    [[0, 2, 4, 6, 8, 10, 12, 14, 16, 18],
+     [20, 22, 24, 26, 28, 30, 32, 34, 36, 38],
+     [40, 42, 44, 46, 48, 50, 52, 54, 56, 58],
+     [60, 62, 64, 66, 68, 70, 72, 74, 76, 78],
+     [80, 82, 84, 86, 88, 90, 92, 94, 96, 98],
+     [100, 102, 104, 106, 108, 110, 112, 114, 116, 118],
+     [120, 122, 124, 126, 128, 130, 132, 134, 136, 138],
+     [140, 142, 144, 146, 148, 150, 152, 154, 156, 158],
+     [160, 162, 164, 166, 168, 170, 172, 174, 176, 178],
+     [180, 182, 184, 186, 188, 190, 192, 194, 196, 198]]
+
+while calling ``.apply_async`` will create a dedicated
+task so that the individual tasks are applied in a worker
+instead::
+
+    >>> add.chunks(zip(range(100), range(100), 10)).apply_async()
+
+You can also convert chunks to a group::
+
+    >>> group = add.chunks(zip(range(100), range(100), 10)).group()
+
+and with the group skew the countdown of each task by increments
+of one::
+
+    >>> group.skew(start=1, stop=10)()
+
+which means that the first task will have a countdown of 1, the second
+a countdown of 2 and so on.
 
 
 
 
+Chaining tasks
+--------------
 
 
+Tasks can be linked together, which in practice means adding
+a callback task::
+
+    >>> res = add.apply_async((2, 2), link=mul.s(16))
+    >>> res.get()
+    4
+
+The linked task will be applied with the result of its parent
+task as the first argument, which in the above case will result
+in ``mul(4, 16)`` since the result is 4.
+
+The results will keep track of what subtasks a task applies,
+and this can be accessed from the result instance::
+
+    >>> res.children
+    [<AsyncResult: 8c350acf-519d-4553-8a53-4ad3a5c5aeb4>]
+
+    >>> res.children[0].get()
+    64
+
+The result instance also has a :meth:`~@AsyncResult.collect` method
+that treats the result as a graph, enabling you to iterate over
+the results::
+
+    >>> list(res.collect())
+    [(<AsyncResult: 7b720856-dc5f-4415-9134-5c89def5664e>, 4),
+     (<AsyncResult: 8c350acf-519d-4553-8a53-4ad3a5c5aeb4>, 64)]
+
+By default :meth:`~@AsyncResult.collect` will raise an
+:exc:`~@IncompleteStream` exception if the graph is not fully
+formed (one of the tasks has not completed yet),
+but you can get an intermediate representation of the graph
+too::
+
+    >>> for result, value in res.collect(intermediate=True)):
+    ....
+
+You can link together as many tasks as you like,
+and subtasks can be linked too::
+
+    >>> s = add.s(2, 2)
+    >>> s.link(mul.s(4))
+    >>> s.link(log_result.s())
+
+You can also add *error callbacks* using the ``link_error`` argument::
+
+    >>> add.apply_async((2, 2), link_error=log_error.s())
+
+    >>> add.subtask((2, 2), link_error=log_error.s())
+
+Since exceptions can only be serialized when pickle is used
+the error callbacks take the id of the parent task as argument instead:
+
+.. code-block:: python
+
+    from proj.celery import celery
+
+    @celery.task
+    def log_error(task_id):
+        result = celery.AsyncResult(task_id)
+        result.get(propagate=False)  # make sure result written.
+        with open("/var/errors/%s" % (task_id, )) as fh:
+            fh.write("--\n\n%s %s %s" % (
+                task_id, result.result, result.traceback))
+
+To make it even easier to link tasks together there is
+a special subtask called :class:`~celery.chain` that lets
+you chain tasks together:
+
+.. code-block:: python
+
+    >>> from celery import chain
+    >>> from proj.tasks import add, mul
+
+    # (4 + 4) * 8 * 10
+    >>> res = chain(add.s(4, 4), mul.s(8), mul.s(10))
+    proj.tasks.add(4, 4) | proj.tasks.mul(8)
+
+
+Calling the chain will apply the tasks in the current process
+and return the result of the last task in the chain::
+
+    >>> res = chain(add.s(4, 4), mul.s(8), mul.s(10))
+    >>> res.get()
+    640
+
+And calling ``apply_async`` will create a dedicated
+task so that the act of applying the chain happens
+in a worker::
+
+    >>> res = chain(add.s(4, 4), mul.s(8), mul.s(10))
+    >>> res.get()
+    640
+
+It also sets ``parent`` attributes so that you can
+work your way up the chain to get intermediate results::
+
+    >>> res.parent.get()
+    64
+
+    >>> res.parent.parent.get()
+    8
+
+    >>> res.parent.parent
+    <AsyncResult: eeaad925-6778-4ad1-88c8-b2a63d017933>
+
+
+Chains can also be made using the ``|`` (pipe) operator::
+
+    >>> (add.s(2, 2) | mul.s(8) | mul.s(10)).apply_async()
+
+Graphs
+~~~~~~
+
+In addition you can work with the result graph as a
+:class:`~celery.datastructures.DependencyGraph`:
+
+.. code-block:: python
+
+    >>> res = chain(add.s(4, 4), mul.s(8), mul.s(10))()
+
+    >>> res.parent.parent.graph
+    285fa253-fcf8-42ef-8b95-0078897e83e6(1)
+        463afec2-5ed4-4036-b22d-ba067ec64f52(0)
+    872c3995-6fa0-46ca-98c2-5a19155afcf0(2)
+        285fa253-fcf8-42ef-8b95-0078897e83e6(1)
+            463afec2-5ed4-4036-b22d-ba067ec64f52(0)
+
+You can even convert these graphs to *dot* format::
+
+    >>> with open("graph.dot", "w") as fh:
+    ...     res.parent.parent.graph.to_dot(fh)
+
+
+and create images::
+
+    $ dot -Tpng graph.dot -o graph.png
+
+.. image:: ../images/graph.png
+
+
+Chords
+------

BIN
docs/images/graph.png


+ 2 - 2
examples/app/myapp.py

@@ -2,7 +2,7 @@
 
 
 Usage:
 Usage:
 
 
-   (window1)$ python myapp.py -l info
+   (window1)$ python myapp.py worker -l info
 
 
    (window2)$ python
    (window2)$ python
    >>> from myapp import add
    >>> from myapp import add
@@ -27,4 +27,4 @@ def add(x, y):
     return x + y
     return x + y
 
 
 if __name__ == "__main__":
 if __name__ == "__main__":
-    celery.worker_main()
+    celery.start()

+ 3 - 7
examples/next-steps/proj/celery.py

@@ -2,10 +2,6 @@ from __future__ import absolute_import
 
 
 from celery import Celery
 from celery import Celery
 
 
-celery = Celery("proj", broker="amqp://", backend="amqp")
-celery.conf.CELERY_IMPORTS = ("proj.tasks", )
-
-if __name__ == "__main__":
-    from billiard import freeze_support
-    freeze_support()
-    celery.start()
+celery = Celery(broker="amqp://",
+                backend="amqp://",
+                include=["proj.tasks"])