Browse Source

Renamed PendingResult -> AsyncResult, also added multiprocessing.AsyncResult
like method aliases. Now got dmap and dmap_async. Also some more docstrings.

Ask Solem 16 years ago
parent
commit
2857d858c9
1 changed files with 114 additions and 22 deletions
  1. 114 22
      celery/task.py

+ 114 - 22
celery/task.py

@@ -14,40 +14,66 @@ import pickle
 import traceback
 
 
-class BasePendingResult(object):
+class BaseAsyncResult(object):
     """Base class for pending result, takes ``backend`` argument."""
+
     def __init__(self, task_id, backend):
         self.task_id = task_id
         self.backend = backend
 
+    def is_done(self):
+        """Returns ``True`` if the task executed successfully."""
+        return self.backend.is_done(self.task_id)
+
+    def get(self):
+        """Alias to ``wait_for``."""
+        return self.wait_for()
+
+    def wait_for(self, timeout=None):
+        """Return the result when it arrives.
+        
+        If timeout is not ``None`` and the result does not arrive within
+        ``timeout`` seconds then ``celery.backends.base.TimeoutError`` is
+        raised. If the remote call raised an exception then that exception
+        will be reraised by get()."""
+        return self.backend.wait_for(self.task_id, timeout=timeout)
+
+    def ready(self):
+        """Returns ``True`` if the task executed successfully, or raised
+        an exception. If the task is still pending, or is waiting for retry
+        then ``False`` is returned."""
+        status = self.backend.get_status(self.task_id)
+        return status != "PENDING" or status != "RETRY"
+
+    def successful(self):
+        """Alias to ``is_done``."""
+        return self.is_done()
+
     def __str__(self):
+        """str(self) -> self.task_id"""
         return self.task_id
 
     def __repr__(self):
-        return "<Job: %s>" % self.task_id
-
-    def is_done(self):
-        return self.backend.is_done(self.task_id)
-
-    def wait_for(self):
-        return self.backend.wait_for(self.task_id)
+        return "<AsyncResult: %s>" % self.task_id
 
     @property
     def result(self):
-        if self.status == "DONE":
+        """The tasks resulting value."""
+        if self.status == "DONE" or self.status == "FAILURE":
             return self.backend.get_result(self.task_id)
         return None
 
     @property
     def status(self):
+        """The current status of the task."""
         return self.backend.get_status(self.task_id)
 
 
-class PendingResult(BasePendingResult):
+class AsyncResult(BaseAsyncResult):
     """Pending task result using the default backend.""" 
 
     def __init__(self, task_id):
-        super(PendingResult, self).__init__(task_id, backend=default_backend)
+        super(AsyncResult, self).__init__(task_id, backend=default_backend)
 
 
 def delay_task(task_name, *args, **kwargs):
@@ -65,7 +91,7 @@ def delay_task(task_name, *args, **kwargs):
     publisher = TaskPublisher(connection=DjangoAMQPConnection())
     task_id = publisher.delay_task(task_name, *args, **kwargs)
     publisher.close()
-    return PendingResult(task_id)
+    return AsyncResult(task_id)
 
 
 def discard_all():
@@ -120,11 +146,16 @@ class Task(object):
         ...         logger = self.get_logger(**kwargs)
         ...         logger.info("Running MyTask with arg some_arg=%s" %
         ...                     some_arg))
+        ...         return 42
         ... tasks.register(MyTask)
 
     You can delay the task using the classmethod ``delay``...
 
-        >>> MyTask.delay(some_arg="foo")
+        >>> result = MyTask.delay(some_arg="foo")
+        >>> result.status # after some time
+        'DONE'
+        >>> result.result
+        42
 
     ...or using the ``celery.task.delay_task`` function, by passing the
     name of the task.
@@ -179,26 +210,33 @@ class Task(object):
 
 
 class PositionQueue(UserList):
+    """A positional queue with filled/unfilled slots."""
 
     class UnfilledPosition(object):
+        """Describes an unfilled slot."""
         def __init__(self, position):
             self.position = position
 
     def __init__(self, length):
+        """Initialize a position queue with ``length`` slots."""
         self.length = length
         self.data = map(self.UnfilledPosition, xrange(length))
 
     def is_full(self):
+        """Returns ``True`` if all the positions has been filled."""
         return len(self) >= self.length
 
     def __len__(self):
+        """len(self) -> number of positions filled with real values."""
         return len(self.filled)
 
     @property
     def filled(self):
+        """Returns the filled slots as a list."""
         return filter(lambda v: not isinstance(v, self.UnfilledPosition),
                       self)
 
+
 class TaskSet(object):
     """A task containing several subtasks, making it possible
     to track how many, or when all of the tasks are completed.
@@ -264,10 +302,21 @@ class TaskSet(object):
         publisher.close()
         return taskset_id, subtask_ids
 
-    def get_async(self, timeout=None):
+    def xget(self):
+        taskset_id, subtask_ids = self.run()
+        results = dict([(task_id, AsyncResult(task_id))
+                            for task_id in subtask_ids])
+        while results:
+            for pending_result in results:
+                if pending_result.status == "DONE":
+                    yield pending_result.result
+                elif pending_result.status == "FAILURE":
+                    raise pending_result.result
+
+    def join(self, timeout=None):
         time_start = time.time()
         taskset_id, subtask_ids = self.run()
-        pending_results = map(PendingResult, subtask_ids)
+        pending_results = map(AsyncResult, subtask_ids)
         results = PositionQueue(length=len(subtask_ids))
 
         while True:
@@ -281,24 +330,67 @@ class TaskSet(object):
             if timeout and time.time() > time_start + timeout:
                 raise TimeOutError("The map operation timed out.")
 
+    @classmethod
+    def remote_execute(cls, func, args):
+        pickled = pickle.dumps(func)
+        arguments = [[[pickled, arg, {}], {}] for arg in args]
+        return cls(ExecuteRemoteTask, arguments)
 
-def map_async(func, args, timeout=None):
+    @classmethod
+    def map(cls, func, args, timeout=None):
+        remote_task = cls.remote_execute(func, args)
+        return remote_task.join(timeout=timeout)
+
+    @classmethod
+    def map_async(cls, func, args, timeout=None):
+        serfunc = pickle.dumps(func)
+        return AsynchronousMapTask.delay(serfunc, args, timeout=timeout)
+
+
+
+def dmap(func, args, timeout=None):
     """Distribute processing of the arguments and collect the results.
 
     Example
     --------
 
-        >>> from celery.task import map_async
+        >>> from celery.task import map
         >>> import operator
-        >>> map_async(operator.add, [[2, 2], [4, 4], [8, 8]])
+        >>> dmap(operator.add, [[2, 2], [4, 4], [8, 8]])
         [4, 8, 16]
 
     """
-    pickled = pickle.dumps(func)
-    arguments = [[[pickled, arg, {}], {}] for arg in args]
-    taskset = TaskSet(ExecuteRemoteTask, arguments)
-    return taskset.get_async(timeout=timeout)
+    return TaskSet.map(func, args, timeout=timeout)
+
+class AsynchronousMapTask(Task):
+    name = "celery.map_async"
+
+    def run(self, serfunc, args, **kwargs):
+        timeout = kwargs.get("timeout")
+        logger = self.get_logger(**kwargs)
+        logger.info("<<<<<<< ASYNCMAP: %s(%s)" % (serfunc, args))
+        return TaskSet.map(pickle.loads(serfunc), args, timeout=timeout)
+tasks.register(AsynchronousMapTask)
 
+def dmap_async(func, args, timeout=None):
+    """Distribute processing of the arguments and collect the results
+    asynchronously. Returns a :class:`AsyncResult` object.
+
+    Example
+    --------
+
+        >>> from celery.task import dmap_async
+        >>> import operator
+        >>> presult = dmap_async(operator.add, [[2, 2], [4, 4], [8, 8]])
+        >>> presult
+        <AsyncResult: 373550e8-b9a0-4666-bc61-ace01fa4f91d>
+        >>> presult.status
+        'DONE'
+        >>> presult.result
+        [4, 8, 16]
+
+    """
+    return TaskSet.map_async(func, args, timeout=timeout)
 
 class PeriodicTask(Task):
     """A periodic task is a task that behaves like a cron job.